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PREFACE TO VERSION 1

LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering,
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida
in Gainesville.

Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end
computing hardware.

At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston.
Thanks are due to Mr. Mike Burger for setting up the examples.

Nielen Stander
Livermore, CA
August, 1999

PREFACE TO VERSION 2

Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be
summarized as follows:

The addition of a mathematical library of expressions for composite functions.
The addition of variable screening through the analysis of variance.

The expansion of the multidisciplinary design optimization capability of LS-OPT.
The expansion of the set of point selection schemes available to the user.

The interface to the LS-DYNA binary database.

Additional features to facilitate the distribution of simulation runs on a network.
The addition of Neural Nets and Kriging as metamodeling techniques.
Probabilistic modeling and Monte Carlo simulation. A sequential search method.

NN R =

As in the past, these developments have been influenced by industrial partners, particularly in the
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in
the Mechanical Engineering Department at Linkoping University, Sweden and by Professor Ken Craig’s
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.
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Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux
Livermore, CA

January, 2003
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PREFACE TO VERSION 3

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards:

N —
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I11.
12.

13.
14.

15.

16.
17.
18.
19.
20.
21.

22.

23

LS-OPT is now available for Microsoft Windows.

Commands have been added to simplify parameter identification using continuous curves of
measured data.

Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling
geometric and shell thickness variability.

Extended visualization of statistical quantities based on multiple runs were implemented by further
integrating LS-PREPOST.

An internal d3plot interface was developed.

Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in
the design constraints.

Neural network committees were introduced as a means to quantify and generalize response
variability.

Mixed discrete-continuous optimization is now possible.

Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing
features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters.
The importation of user-defined sampling schemes has been refined.

Matrix operations have been introduced.

Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part)
to identify the spatial location. The coordinate can be referred to a selected state.

A simple feature is provided to gather and compress the database for portability.

A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot
results to a moving coordinate system.

Checking of LS-DYNA keyword files is introduced as a means to avoid common output request
problems.

Statistical distributions can be plotted in the distribution panel in the GUI.

A feature is introduced to retry aborted runs on queuing systems.

3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting.
Radial basis function networks as surrogate models.

Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based).
Robust parameter (Taguchi) design is supported. The variation of a response can be used as an
objective or a constraint in the optimization process.

Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates.
These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST.

. The ANSA morpher is supported as a preprocessor.
24,
25.
26.
27.
28.
29.

The truncated normal distribution is supported.

Extra input files can be provided for variable parsing.

A library-based user-defined metamodel is supported.

User-defined analysis results can be imported.

PRESS predictions can be plotted as a function of the computed values.
The DynaStats panel has been redesigned completely (Version 3.4)



30. Strategies for metamodel-based optimization are provided as GUI options

31. An algorithm panel has been added for setting optimization algorithm parameters.

32. User-defined sampling points can be evaluated using an existing metamodel.

33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid
algorithms such as the Hybrid SA and Hybrid GA have also been added.

34. Kriging has been updated and accelerated.

35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point
attributes such as feasibility and iteration number.

36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color
coding for the 4™ dimension as well as color status of points for feasibility and iteration number.

As in the past, these developments were strongly influenced by industrial partners, particularly in the
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of
system and material parameters. In addition to long-time participants: Professor Larsgunnar Nilsson
(Mechanical Engineering Department, Linkdping University, Sweden) and Professor Ken Craig
(Department of Mechanical Engineering, University of Pretoria, South Africa), significant contributions
have been made by Dr. Daniel Hilding, Mr. David Bjorkevik and Mr. Christoffer Belestam of Engineering
Research AB (LinkoOping) as well as Dr.-Ing. Heiner Miillerschon, Dipl.-Ing. Marko Thiele and Dipl.-Math.
Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany.

Nielen Stander, Willem Roux and Tushar Goel

Livermore, CA
January, 2009
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PREFACE TO VERSION 4

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor as well
as the improvement of the job scheduling system, especially with regard to scheduling on computer clusters.
The following features have been added:

Version 4.0:

1.

The Viewer has been redesigned completely to accommodate a multi-window format using a split-
window and detachable window feature.

2. The Correlation matrix for simulation variables and results has been added.

3. For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate
plots have been added to the more traditional scatter plot. Multiple points can be selected to create a
table of response values. Point highlighting is cross-connected between plot types.

4. An interface for the METAPost postprocessor has been added.

. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the
LS-OPT/Topology User's Manual.

6. Many of the features such as the Reliability-Based Design Optimization have been significantly
accelerated.

7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a
special queuing system Honda has been added.

8. The NASTRAN™ interface for frequency extraction and mode tracking has been added.

Version 4.1:

9. Discrete sampling can be done on a variable by variable basis for most sampling schemes including
D-Optimality, Space Filling and Full Factorial.

10. The Space Filling algorithm has been improved for accuracy and speed.

11. Job scheduling has been significantly improved. Environment variables can be exported through
queuing systems.

12. Job data is displayed on the run progress bars with a selection to view the solver log file at any stage
of the run.

13. Three injury criteria: a3ms, Chest Compression and Viscous Criterion have been added.

14. SPH, DBBEMAC and NODFOR groups have been added to the LS-DYNA response interface.

15. GenEx, the LS-OPT Generic Extractor provides features for extracting entities from text files. This
allows LS-OPT to be used with any solver code that produces a text database.

16. Responses can be linked to LS-DYNA cases (*CASE keyword).



17.

18

19.

20.

21.
22.

In addition to polynomials, Radial Basis Functions can now be used for parameter identification.

. The following features have been added to the Viewer: Self-Organizing Maps (for multi-objective

optimization), two-dimensional interpolation matrix using metamodels, global sensitivities (Sobol),
Computed (simulation) and Predicted (metamodel) histories, Parallel Coordinate plot for simulation
results.

Experiments can be replicated for stochastic fields. Improvements have been made to Stochastic
Fields (*PERTURBATION) in LS-DYNA. Special coordinate systems have been added.
*PERTURBATION MATERIAL has been added for MAT24.

To avoid synchronization errors, the Experiments and AnalysisResults databases have been
converted to self-contained .csv files.

The Run page has been rationalized. Clean start options are now available for all tasks.

A selected subset of Pareto optimal points can be exported to a standard format. The file can be used
to schedule the points as simulations.

Version 4.2:

23.

24.

25.

26.

27.

28.

29.

30.

31.

The algorithm for constrained experimental design has been greatly improved. An optimization
algorithm was introduced to locate design points within specified constraint bounds.

LSTCVM has been added as a Secure Proxy Server for distributing solver jobs across a computer
cluster. Running LS-OPT on a Windows machine controlling solver jobs on a Linux cluster is now
possible.

Individual jobs can be stopped using LSKILLJOB from the LS-OPT GUI. This feature has been
implemented to kill lagging jobs which tend to hold up the entire optimization run. Accelerated job
killing is provided as an option. A job can also be flagged for restart. LSTCVM and LSKILLJOB
combined with LSCHEDULER and other auxiliary programs provide a sophisticated job distribution
system.

More injury criteria are now available, namely MOC, NNIC, NIC, Nkm, LNLI, TTI and TI. A 3-
node version of the injury criterion Clip3m has been added.

Kinematics for NODOUT-based responses and histories. Includes the calculation of deformation and
distance in global, local and local-in-reference-frame coordinate systems.

DBFSI (fluid structure interaction) is available in the history and response interfaces.

Curve Mapping has been added to improve the curve matching metric for material identification,
especially for hysteretic curves, curves with steep sections and cases where only partial test data is
available. A newly developed Partial Curve Mapping algorithm is used.

Metamodel prediction accuracy based on PRESS error has been added as a stopping criterion for the
Sequential Response Surface Method (SRSM).

Automatic internal constraint scaling based on the constraint bounds has been added to the GUI.
This feature ensures that constraint violations are treated equally irrespective of their magnitudes.



32.

33.
34.

35.

36.

37.

38.

39.

40.

41.
42.

The Dominated Hypervolume method as a stopping criterion for multi-objective optimization
methods (GA). Crowding Distance and Spread of the Pareto Optimal Front can be monitored
graphically.

Self-Organizing Maps is available to visualize simulation results.

Refinements have been made to the 2D Metamodel Cross-Section display by adding simulation
points. The History display was improved by allowing the selection and display of multiple histories.
There is stronger unification amongst the different types of displays.

LS-OPT database archiving has been expanded to include extra files such as solver input files.

Histories have been added to the GenEx (generic extraction) result extraction feature. In the past,
only responses could be extracted.

The input file environment can be used to store include files. LS-OPT will in this case automatically
be able to parse and transmit the files (e.g. to a cluster).

A derivative history function has been added to compute the derivative of a time history, e.g.
acceleration from velocity.

A general filtering feature for time histories has been added. Filtering has been available for LS-
DYNA-extracted data, but can now be applied to any time history, also those produced using
expressions or generic extraction.

Selective parsing of input files.
A User-defined post-processor option has been added.

Mode tracking has been converted to the MAC criterion. Tracking can now be done using any
version of LS-DYNA.

The automotive and other industries have again made significant contributions to the development of new
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical
Engineering Department, Link&ping University, Sweden), Dr. Daniel Hilding, Mr. David Bjorkevik and Mr.
Christoffer Belestam of Engineering Research AB (Linkdping) as well as Dr.-Ing. Heiner Miillerschon,
Dipl.-Ing. Marko Thiele and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany
have made major contributions as developers. Dr. Trent Eggleston has recently created LSTCVM and
LSKILLJOB and, while working with customers, has made vast improvements to solver job scheduling via
queuing systems.

Nielen Stander, Tushar Goel and Willem Roux

Livermore, CA

May, 2011
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1. Introduction

In the conventional design approach, a design is improved by evaluating its response and making design
changes based on experience or intuition. This approach does not always lead to the desired result, that of a
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure
by which design criteria are incorporated as objectives and constraints into an optimization problem that is
then solved, is referred to as optimal design.

The state of computational methods and computer hardware has only recently advanced to the level where
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of
impact problems and manufacturing processes. The responses resulting from these time-dependent
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic,
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff
error may further aggravate these effects, which, if not properly addressed in an optimization method, could
obstruct the improvement of the design by corrupting the function gradients.

Among several methodologies available to address optimization in this design environment, response
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated
and the method attempts to find a representation of the design response within a bounded design space or
smaller region of interest. This extraction of global information allows the designer to explore the design
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted
differently according to importance and therefore the design space needs to be explored more widely.

Part of the challenge of developing a design program is that designers are not always able to clearly define
their design problem. In some cases, design criteria may be regulated by safety or other considerations and
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance
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of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs.
another becomes important.

Trade-off curves are visual tools used to depict compromise properties where several important response
parameters are involved in the same design. They play an extremely important role in modern design where
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the
principle of Pareto optimality. This implies that only those designs of which the improvement of one
response will necessarily result in the deterioration of any other response are represented. In this sense no
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more
important than another. Although this choice must ultimately be made by the designer, these curves can be
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between
mass (or energy efficiency) and safety.

Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will
have to be integrated into a particular design. This approach of multidisciplinary design requires the
designer to run more than one case, often using more than one type of solver. For example, the design of a
vehicle may require the consideration of crashworthiness, ride comfort, noise level as well as durability.
Moreover, the crashworthiness analysis may require more than one analysis case, e.g. frontal and side
impact. It is therefore likely that as computers become more powerful, the integration of design tools will
become more commonplace, requiring a multidisciplinary design interface.

Modern architectures often feature multiple processors and all indications are that the demand for
distributed computing will strengthen into the future. This is causing a revolution in computing as single
analyses that took a number of days in the recent past can now be done within a few hours. Optimization,
and RSM in particular, lend themselves very well to being applied in distributed computing environments
because of the low level of message passing. Response surface methodology is efficiently handled, since
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods
have a smaller advantage in distributed computing environments than global search methods such as RSM.

The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a
pure response surface based method, the effect of the variables is distinguished from chance events while
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which
chance plays a significant role, responses of design interest are often of a global nature (being averaged or
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but
they are not random.

Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated)
design response in reliability based design optimization and robustness improvement. This methodology is
currently under development and will be available in future versions of LS-OPT.
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1.1. Overview of the manual

This LS-OPT® manual consists of three parts. In the first part, the Theoretical Manual (Chapters 2 through
6), the theoretical background is given for the various features in LS-OPT. The next part is the User’s
Manual (Chapters 7 through 19), which guides the user in the use of LS-OPTui, the graphical user interface.
These chapters also describe the command language syntax. The final part of the manual is the Examples
section (Chapter 21), where eight examples are used to illustrate the application of LS-OPT to a variety of
practical applications. Appendices contain interface features (Appendix A and Appendix B), database file
descriptions (Appendix C), a mathematical expression library (Appendix D), a Glossary (Appendix E) and
a Quick Reference Manual (Appendix ).

Sections containing advanced topics are indicated with an asterisk (*).

How to read this manual:

Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 7
(The design optimization process). The Theoretical Manual (Chapters 2 through 6) serves mainly as an in-
depth reference section for the underlying methods. The Examples section is included to demonstrate the
features and capabilities and can be read together with Chapters 7 to 21 to help the user to set up a problem
formulation. The items in the Appendices are included for reference to detail, while the Quick Reference
Manual provides an overview of all the features and command file syntax.

Links can be used for cross-referencing and will take the reader to the relevant item such as Section 12.4.5,
Reference [4] or Figure 3-5 (just click on any of the afore-mentioned references).
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2. Response Surface Methodology

2.1. Introduction

An authoritative text on Response Surface Methodology (RSM) [1] defines the method as “a collection of
statistical and mathematical techniques for developing, improving, and optimizing processes.” Although an
established statistical method for several decades [2], it has only recently been actively applied to
mechanical design [3]. Due to the importance of weight as a criterion and the multidisciplinary nature of
aerospace design, the application of optimization and RSM to design had its early beginnings in the
aerospace industry. A large body of pioneering work on RSM was conducted in this and other mechanical
design areas during the eighties and nineties [3]-[6]. RSM can be categorized as a Metamodeling technique
(see Chapter 3 for other Metamodeling techniques namely Neural Networks, and Radial Basis Functions
available in LS-OPT).

Although inherently simple, the application of response surface methods to mechanical design has been
inhibited by the high cost of simulation and the large number of analyses required for many design
variables. In the quest for accuracy, increased hardware capacity has been consumed by greater modeling
detail and therefore optimization methods have remained largely on the periphery of the area of mechanical
design. In lieu of formal methods, designers have traditionally resorted to experience and intuition to
improve designs. This is seldom effective and also manually intensive. Moreover, design objectives are
often in conflict, making conventional methods difficult to apply, and therefore more analysts are
formalizing their design approach by using optimization.

2.1.1. Approximating the response

Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design
surface is fitted to the response values using regression analysis. Least squares approximations are
commonly used for this purpose. The response surfaces are then used to construct an approximate design
“subproblem” which can be optimized.

The response surface method relies on the fact that the set of designs on which it is based is well chosen.
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to
construct a surface at all. Because simulations are often time-consuming and may take days to run, the
overall efficiency of the design process relies heavily on the appropriate selection of a design set on which
to base the approximations. For the purpose of determining the individual designs, the theory of
experimental design (Design of Experiments or DOE) is required. Several experimental design criteria are
available but one of the most popular for an arbitrarily shaped design space is the D-optimality criterion.
This criterion has the flexibility of allowing any number of designs to be placed appropriately in a design
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space with an irregular boundary. The understanding of the D-optimality criterion requires the formulation
of the least squares problem.

Consider a single response variable y dependent upon a number of variables x. The exact functional
relationship between these quantities is

y=n(x) (2-1)
The exact functional relationship is now approximated (e.g. polynomial approximation) as
n(x) = f(x) (2-2)

The approximating function f'is assumed to be a summation of basis functions:
L
JS(x)= Zai(l)i (x) (2-3)
i=1

where L is the number of basis functions ¢, used to approximate the model.
The constants a =[a,,a,,...,a,]" have to be determined in order to minimize the sum of the square error:
P X P L 2
Z{[y(xp)—f(xp)] }= > {y(xp)—zaid)i(xp )} (2-4)
p=l1 p=1 i=1

P is the number of experimental points and y is the exact functional response at the experimental points x;.

The solution to the unknown coefficients is:
—1
a= (XTX) XTy (2_5)
where X is the matrix

X=[x,]=[,x,)] (2-6)

The next critical step is to choose appropriate basis functions. A popular choice is the quadratic
approximation

(1):[l,xl,...,xn,xf,xlxz,...,xlx x2] (2-7)

notea Ny

but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms),
interaction (linear and off-diagonal terms) and quadratic functions.
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2.1.2. Factors governing the accuracy of the response surface

Several factors determine the accuracy of a response surface [1].
1. The size of the subregion

For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. For
the general problem, there is a minimum size at which there is no further gain in accuracy. Beyond this
size, the variability in the response may become indistinguishable due to the presence of ‘noise’.

2. The choice of the approximating function

Higher order functions are generally more accurate than lower order functions. Theoretically, over-
fitting (the use of functions of too high complexity) may occur and result in suboptimal accuracy, but
there is no evidence that this is significant for polynomials up to second order [1].

3. The number and distribution of the design points

For smooth problems, the prediction accuracy of the response surface improves as the number of points
is increased. However, this is only true up to roughly 50% oversampling [1] (very roughly).

2.1.3. Advantages of the method

Design exploration

As design is a process, often requiring feedback and design modifications, designers are mostly
interested in suitable design formulae, rather than a specific design. If this can be achieved, and the
proper design parameters have been used, the design remains flexible and changes can still be made at a
late stage before verification of the final design. This also allows multidisciplinary design to proceed
with a smaller risk of having to repeat simulations. As designers are moving towards computational
prototyping, and as parallel computers or network computing are becoming more commonplace, the
paradigm of design exploration is becoming more important. Response surface methods can thus be
used for global exploration in a parallel computational setting. For instance, interactive trade-off studies
can be conducted.

Global optimization

Response surfaces have a tendency to capture globally optimal regions because of their smoothness and
global approximation properties. Local minima caused by noisy response are thus avoided.

2.1.4. Other types of response surfaces

Neural and Radial Basis Function networks and Kriging approximations can also be used as response
surfaces and are discussed under the heading of metamodels in Sections 3.1 and 3.2.

2.2. Experimental design

Experimental design is the selection procedure for finding the points in the design space that must be
analyzed. Many different types are available [1]. The factorial, Koshal, composite, D-optimal and Latin
Hypercube designs are detailed here.
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2.2.1. Factorial design

This is a /" grid of designs and forms the basis of many other designs. / is the number of grid points in one
dimension. It can be used as a basis set of experiments from which to choose a D-optimal design. In LS-
OPT, the 3" and 5" designs are used by default as the basis experimental designs for first and second order
D-optimal designs respectively.

Factorial designs may be expensive to use directly, especially for a large number of design variables.

2.2.2. Koshal design

This family of designs is saturated for modeling of any response surface of order d.

First order model

For n = 3, the coordinates are:

Xy Xy X3

S O =
S = O
- o O

As a result, four coefficients can be estimated in the linear model
o=[Lx,..x,] (2-8)

Second order model

For n = 3, the coordinates are:

0 0 0
1 0 0
0o 1 0
0 0 1
1.0 0
0 -1 0
0 0 -1
11 0
10 1

0 1 1
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As a result, ten coefficients can be estimated in the quadratic model
O =1, s X, s X7 3 Xy Xy gy XX, s X | (2-9)

2.2.3. Central composite design

This design uses the 2" factorial design, the center point, and the ‘face center’ points and therefore consists
of P=2"+ 2n + 1 experimental design points. For n = 3, the coordinates are:

0 0 0]
o 0 0
0 o 0
0 0 o
-a 0 0
0 —-a O
0 0 —-a
-1 -1 -1
1 -1 -1
-1 1 -1
-1 -1 1
1 I -1
1 -1 1
-1 1 1

1 1 1|

The points are used to fit a second-order function. The value of o =3/2" .
2.2.4. D-optimal design

This method uses a subset of all the possible design points as a basis to solve max‘X D¢ ‘ The subset is

usually selected from an /" -factorial design where / is chosen a priori as the number of grid points in any
particular dimension. Design regions of irregular shape, and any number of experimental points, can be
considered [7]. The experiments are usually selected within a sub-region in the design space thought to
contain the optimum. A genetic algorithm is used to solve the resulting discrete maximization problem. See
References [1] and [5].

The numbers of required experimental designs for linear as well as quadratic approximations are
summarized in the table below. The value for the D-optimality criterion is chosen to be 1.5 times the Koshal
design value plus one. This seems to be a good compromise between prediction accuracy and computational
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cost [7]. The factorial design referred to below is based on a regular grid of 2" points (linear) or 3" points
(quadratic).

Table 2-1: Number of experimental points required for experimental designs

Number of Linear approximation Quadratic approximation Central

Variables n | Koshal | D-optimal | Factorial | Koshal | D-optimal | Factorial | Composite
1 2 4 2 3 5 3 3
2 3 5 4 6 10 9 9
3 4 7 8 10 16 27 15
4 5 8 16 15 23 81 25
5 6 10 32 21 32 243 43
6 7 11 64 28 43 729 77
7 8 13 128 36 55 2187 143
8 9 14 256 45 68 6561 273
9 10 16 512 55 83 19683 531
10 11 17 1024 66 100 59049 1045

2.2.5. Latin Hypercube Sampling (LHS)

The Latin Hypercube design is a constrained random experimental design in which, for » points, the range
of each design variable is subdivided into n» non-overlapping intervals on the basis of equal probability. One
value from each interval is then selected at random with respect to the probability density in the interval.
The n values of the first value are then paired randomly with the n values of variable 2. These n pairs are
then combined randomly with the »n values of variable 3 to form n triplets, and so on, until k-tuplets are
formed.

Latin Hypercube designs are independent of the mathematical model of the approximation and allow
estimation of the main effects of all factors in the design in an unbiased manner. On each level of every
design variable only one point is placed. There are the same number of levels as points, and the levels are
assigned randomly to points. This method ensures that every variable is represented, no matter if the
response is dominated by only a few ones. Another advantage is that the number of points to be analyzed
can be directly defined. Let P denote the number of points, and » the number of design variables, each of
which is uniformly distributed between 0 and 1. Latin hypercube sampling (LHS) provides a P-by-n matrix
S = §;; that randomly samples the entire design space broken down into P equal-probability regions:

S, =, -¢, )/ P, (2-10)

where m,;,...,n,, are uniform random permutations of the integers 1 through P and ; independent random

numbers uniformly distributed between 0 and 1. A common simplified version of LHS has centered points
of P equal-probability sub-intervals:
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S, =(n, -0.5)/P (2-11)

LHS can be thought of as a stratified Monte Carlo sampling. Latin hypercube samples look like random
scatter in any bivariate plot, though they are quite regular in each univariate plot. Often, in order to generate
an especially good space filling design, the Latin hypercube point selection .S described above is taken as a
starting experimental design and then the values in each column of matrix § is permuted so as to optimize
some criterion. Several such criteria are described in the literature.

Maxi-min

One approach is to maximize the minimal distance between any two points (i.e. between any two rows
of S). This optimization could be performed using, for example, Adaptive Simulated Annealing (see
Section 4.10). The maximin strategy would ensure that no two points are too close to each other. For
small P, maximin distance designs will generally lie on the exterior of the design space and fill in the
interior as P becomes larger. See Section 2.2.6 for more detail.

Centered L2-discrepancy

Another strategy is to minimize the centered L2-discrepancy measure. The discrepancy is a quantitative
measure of non-uniformity of the design points on an experimental domain. Intuitively, for a uniformly

distributed set in the n-dimensional cube " =[0,1]", we would expect the same number of points to be
in all subsets of /" having the same volume. Discrepancy is defined by considering the number of
points in the subsets of /" . Centered L2 (CL2) takes into account not only the uniformity of the design

points over the n-dimensional box region /", but also the uniformity of all the projections of points over
lower-dimensional subspaces:

2
. 2 z H S, =050 |5, -05
CL% :(13/12) __Iizl...Pj:I...n 1+‘ ./ 2 ‘_‘ ./ 2 ‘

(2-12)
5, —0.5] . s, —0.5 |s, -5

N J
+P2 > ]+ 5 5 |

k=1..Pi=1..P j=l..n

2.2.6. Space-filling designs

In the modeling of an unknown nonlinear relationship, when there is no persuasive parametric regression
model available, and the constraints are uncertain, one might believe that a good experimental design is a set
of points that are uniformly scattered on the experimental domain (design space). Space-filling designs
impose no strong assumptions on the approximation model, and allow a large number of levels for each
variable with a moderate number of experimental points. These designs are especially useful in conjunction
with nonparametric models such as neural networks (feedforward networks, radial basis functions) and
Kriging, [8], [9]. Space-filling points can also be submitted as the basis set for constructing an optimal (D-
Optimal, etc.) design for a particular model (e.g. polynomial). Some space-filling designs are: random Latin
Hypercube Sampling (LHS), Orthogonal Arrays, and Orthogonal Latin Hypercubes.
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The key to space-filling experimental designs is in generating 'good' random points and achieving
reasonably uniform coverage of sampled volume for a given (user-specified) number of points. In practice,
however, we can only generate finite pseudo-random sequences, which, particularly in higher dimensions,
can lead to a clustering of points, limiting their uniformity. To find a good space-filling design is a nonlinear
programming hard problem, which — from a theoretical point of view — is difficult to solve exactly. This
problem, however, has a representation, which might be within the reach of currently available tools. To
reduce the search time and still generate good designs, the popular approach is to restrict the search within a
subset of the general space-filling designs. This subset typically has some good 'built-in' properties with
respect to the uniformity of a design.

The constrained randomization method termed Latin Hypercube Sampling (LHS) and proposed in [10], has
become a popular strategy to generate points on the 'box' (hypercube) design region. The method implies
that on each level of every design variable only one point is placed, and the number of levels is the same as
the number of runs. The levels are assigned to runs either randomly or so as to optimize some criterion, €.g.
so that the minimal distance between any two design points is maximized (‘'maximin distance' criterion).
Restricting the design in this way tends to produce better Latin hypercubes. However, the computational
cost of obtaining these designs is high. In multidimensional problems, the search for an optimal Latin
hypercube design using traditional deterministic methods (e.g. the optimization algorithm described in [11])
may be computationally prohibitive. This situation motivates the search for alternatives.

Probabilistic search techniques, adaptive simulated annealing and genetic algorithms are attractive
heuristics for approximating the solution to a wide range of optimization problems. In particular, these
techniques are frequently used to solve combinatorial optimization problems, such as the traveling salesman
problem. Morris and Mitchell [12] adopted the simulated annealing algorithm to search for optimal Latin
hypercube designs.

In LS-OPT, space-filling designs can be useful for constructing experimental designs for the following
purposes:

1. The generation of basis points for the D-optimality criterion. This avoids the necessity to create a
very large number of basis points using e.g. the full factorial design for large n. E.g. for n=20 and 3
points per variable, the number of points = 3% = 3.5%10°.

2. The generation of design points for all approximation types, but especially for neural networks and
Kriging.

3. The augmentation of an existing experimental design. This means that points can be added for each
iteration while maintaining uniformity and equidistance with respect to pre-existing points.

LS-OPT contains 6 algorithms to generate space-filling designs (see Table 2-2). Only Algorithm 5 has been
made available in the graphical interface. LS-OPTui.
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Algorithm 0 Algorithirm 1 Algorithm 2
minl[p]l:IIHB,CLE:EI.DélB min(p):D.EB,CLEZD.DD min(p):D.SB,CLEZD.DSD
) ‘
Algarithm 3 Algarithm 4 Algarithm &
min(p):D.45,CL2:D.D1 1 min{p)=0.681 ,CLEZD.DSD min{p)=0.71 ,CLEZIIH as

Figure 2-1: Six space-filling designs: 5 points in a 2-dimensional box region

Table 2-2: Description of space-filling algorithms

Algorithm Description
Number
0 Random
1 'Central point' Latin Hypercube Sampling (LHS) design with random
pairing
2 'Generalized' LHS design with random pairing
3 Given an LHS design, permutes the values in each column of the LHS

matrix so as to optimize the maximin distance criterion taking into account
a set of existing (fixed) design points. This is done using simulated
annealing. Fixed points influence the maximin distance criterion, but are
not allowed to be changed by Simulated Annealing moves.

4 Given an LHS design, moves the points within each LHS subinterval
preserving the starting LHS structure, optimizing the maximin distance
criterion and taking into consideration a set of fixed points.

5 Given an arbitrary design (and a set of fixed points), randomly moves the
points so as to optimize the maximin distance criterion using simulated
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annealing (see 4.10).

Discussion of algorithms

The Maximin distance space-filling algorithms 3, 4 and 5 minimize the energy function defined as the
negative minimal distance between any two design points. Theoretically, any function that is a metric can be
used to measure distances between points, although in practice the Euclidean metric is usually employed.

The three algorithms, 3, 4 and 5, differ in their selection of random Adaptive Simulated Annealing moves
from one state to a neighboring state. For algorithm 3, the next design is always a 'central point' LHS design
(Eq. 2.21). The algorithm swaps two elements of 7, S; and Sy, where i and & are random integers from 1 to
N, and j is a random integer from 1 to n. Each step of algorithm 4 makes small random changes to a LHS
design point preserving the initial LHS structure. Algorithm 5 transforms the design completely randomly -
one point at a time. In more technical terms, algorithms 4 and 5 generate a candidate state, S’, by modifying
a randomly chosen element S;; of the current design, S, according to:

Sy =8, +¢ (2-13)

where £ is a random number sampled from a normal distribution with zero mean and standard deviation
0z € [Omin, Omax]- In algorithm 4 it is required that both S;j and §; in Eq. (2.23) belong to the same Latin

hypercube subinterval.

Notice that maximin distance energy function does not need to be completely recalculated for every iterative
step of simulated annealing. The perturbation in the design applies only to some of the rows and columns of
S. After each step we can recompute only those nearest neighbor distances that are affected by the stepping
procedures described above. This reduces the calculation and increased the speed of the algorithm.

To perform an annealing run for the algorithms 3, 4 and 5, the values for Ti,.x and Ti,in can be adapted to the
scale of the objective function according to:

T =T xAE Imin =T X AL (2-14)

max

where AE > 0 is the average value of |E'-E| observed in a short preliminary run of simulated annealing and
Tmax and Thin are positive parameters.

The basic parameters that control the adaptive simulated annealing in algorithms 3, 4 and 5 can be
summarized as follows:

Energy function: negative minimal distance between any two points in the design.

Stepping scheme: depends on whether the LHS property is preserved or not.

el A

Scalar parameters:0.

@)

Parameters for the cooling schedule:

o scaling factor for the initial (maximal) temperature, 7y,
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o scaling factor for the minimal temperature, 7,

o ratio of cost temperature and the parameter temperatures,

o number of iterations at each temperature, v7.

o parameter temperature update interval

o Parameters that control the standard deviation of § in (2.13):
o upper bound, Gpax,

o lower bound, opin.

o Termination criteria: o

maximal number of energy function evaluations, N;,.

2.2.7. Random number generator

The Mersenne Twister [13] is used in Neural Network construction and Monte Carlo, Latin Hypercube,
Space Filling and D-Optimal point selection and probabilistic analysis. The Mersenne Twister (MT19937) is
a pseudo-random number generator developed by Matsumoto and Nishimura and has the merit that it has a
far longer period and far higher order of equi-distribution than any other implemented generators. It has
been proved that the period is 2'°°*’-1, and a 623-dimensional equi-distribution property is assured. Features
have been provided to seed the generator to enable sensitivity studies.

2.2.8. Reasonable experimental designs

A ‘reasonable’ design space refers to a region of interest which, in addition to having specified bounds on
the variables, is also bounded by specified values of the responses. This results in an irregular shape of the
design space.

In LS-OPT, constrained experimental designs can be obtained for the D-Optimality criterion as well as for
Space Filling.

Reasonable experimental designs can only be obtained using explicit constraints, i.e. constraints which are
not defined by a metamodel.

2.3. Model adequacy checking

As indicated in the previous sections, response surfaces are useful for interactive trade-off studies. For the
trade-off surface to be useful, its capability of predicting accurate response must be known. Error analysis is
therefore an important aspect of using response surfaces in design. Inaccuracy is not always caused by
random error (noise) only, but modeling error (sometimes called bias error), especially in a large subregion
or where there is strong non-linearity present, could play a very significant role. There are several error
measures available to determine the accuracy of a response surface.

2.3.1. Residual sum of squares

For the predicted response j,and the actual response y;, this error is expressed as
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e =20 -3) (2-15)

1

If applied only to the regression points, this error measure is not very meaningful unless the design space is
oversampled e.g., ¢ =0 if the number of points P equals the number of basis functions L in the
approximation.

2.3.2. RMS error

The residual sum-of-squares is sometimes used in its square root form, &,,,, and called the “RMS error”:

P

€ ruts :\/lZ(yi_j}i)z (2-16)

P
2.3.3. Maximum residual
This is the maximum residual considered over all the design points and is given by
€ e = Max|y, — 7,/ (2-17)
2.3.4. Prediction error

The same as the RMS error, but using only responses at preselected prediction points independent of the
regression points. This error measure is an objective measure of the prediction accuracy of the response
surface since it is independent of the number of construction points. It is important to know that the choice
of a larger number of construction points will, for smooth problems, diminish the prediction error.

The prediction points can be determined by adding rows to X

X
Xa(x,,){ Ax )} (2-18)

and solving
max|X! X, | = max|X"X + A" A (2-19)
for x;,.

2.3.5. PRESS residuals

The prediction sum of squares residual (PRESS) uses each possible subset of P — 1 responses as a regression
data set, and the remaining response in turn is used to form a prediction set [1]. PRESS can be computed
from a single regression analysis of all P points.
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2
PRESS = z{” ZJ (2-20)
where 4;; are the diagonal terms of
I~ Vv’
H = X(X"X)'X". (2-21)
H is the “hat” matrix, the matrix that maps the observed responses to the fitted responses, i.e.
y =Hy. (2-22)

The PRESS residual can also be written in its square root form

2

1 yi—Yy
SPRESS = A 2-23
\/P,Z(l hl-,-j (223

For a saturated design, H equals the unit matrix I so that the PRESS indicator becomes undefined.

2.3.6. The coefficient of multiple determination R’

The coefficient of determination R is defined as:
R2? = il (2-24)

where P is the number of design points and y, y,and y; represent the mean of the responses, the predicted

response, and the actual response, respectively. This indicator, which varies between 0 and 1, represents the
ability of the response surface to identify the variability of the design response. A low value of R* usually
means that the region of interest is either too large or too small and that the gradients are not trustworthy.
The value of 1.0 for R* indicates a perfect fit. However, the value will not warn against an overfitted model
with poor prediction capabilities.

2.3.7. R? for Prediction

For the purpose of prediction accuracy the R’ indicator has been devised [1].

prediction

R =1 PRESS (2-25)

prediction S
»y

where
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2
ro 1<
Syy=y y_F(;J’i . (2-26)

R 2
prediction

represents the ability of the model to detect the variability in predicting new responses [1].

2.3.8. Iterative design and prediction accuracy

In an iterative scheme with a shrinking region the R* value tends to be small at the beginning, then
approaches unity as the region of interest shrinks, thereby indicating improvement of the modeling ability. It
may then reduce again as the noise starts to dominate in a small region causing the variability to become
indistinguishable. In the same progression, the prediction error will diminish as the modeling error fades,
but will stabilize at above zero as the modeling error is replaced by the random error (noise).

2.4. ANOVA

Since the number of regression coefficients determines the number of simulation runs, it is important to
remove those coefficients or variables which have small contributions to the design model. This can be done
by doing a preliminary study involving a design of experiments and regression analysis. The statistical
results are used in an analysis of variance (ANOVA) to rank the variables for screening purposes. The
procedure requires a single iteration using polynomial regression, but results are produced after every
iteration of a normal optimization procedure.

2.4.1. The confidence interval of the regression coefficients

The 100(1 — a)% confidence interval for the regression coefficients b, A j =0,1,...,L is determined by the

inequality
b, —0.5Ab, <B, <b, +0.5Ab,, (2-27)

where

Ab (0)=2t,,,,,1/6°C; (2-28)

and &7 is an unbiased estimator of the variance ¢ given by
u 2

. 2i-9)
i=1

5 = _ (2-29)
P-L P-L

Cj]. is the diagonal element of (XTX)_l corresponding to b; and #, p; 1s Student’s ¢-Distribution. 100(1 —

a)% therefore represents the level of confidence that b; will be in the computed interval.

LS-OPT Version 4.2 47



CHAPTER 2: 1BRESPONSE SURFACE METHODOLOGY

2.4.2. The significance of a regression coefficient b;

The contribution of a single regressor variable to the model can also be investigated. This is done by means
of the partial F-test where F' is calculated to be

2 2
F _ [8 reduced Scomplete ]/V
- 2
Scomplete /(P - L)

(2-30)

where » = 1 and the reduced model is the one in which the regressor variable in question has been removed.

Each of the &’ terms represents the sum of squared residuals for the reduced and complete models
respectively.

It turns out that the computation can be done without analyzing a reduced model by computing

2
F=— /€ . (2-31)
8complete /(P - L)

F can be compared with the F-statistic Fy 1p so that if F'>F,p;, f is non-zero with (100 — )%
confidence. The confidence level a that £ is not zero can also be determined by computing the o for
F = Fg41p.1. The importance of £ is therefore estimated by both the magnitude of b; as well as the level of
confidence in a non-zero f.

The significance of regressor variables may be represented by a bar chart of the magnitudes of the
coefficients b; with an error bar of length 2Ab, («) for each coefficient representing the confidence interval

for a given level of confidence a. The relative bar lengths allow the analyst to estimate the importance of
the variables and terms to be included in the model while the error bars represent the contribution to noise or
poorness of fit by the variable.

All terms have been normalized to the size of the design space so that the choice of units becomes irrelevant
and a reasonable comparison can be made for variables of different kinds, e.g. sizing and shape variables or
different material constants.
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3. Metamodeling Techniques

Metamodeling techniques allow the construction of surrogate design models for the purpose of design
exploration such as variable screening, optimization and reliability. LS-OPT provides the capability of using
three types of metamodeling techniques, namely polynomial response surfaces (already discussed, see
Section 2.1), Neural Networks (NN) (Section 3.1.2) and Radial Basis Function Networks (RBF) (Section
3.1.3). All three of these approaches can be useful to provide a predictive capability for optimization or
reliability. In addition, linear polynomials, although perhaps less accurate, are highly suitable for variable
screening (Section 2.4). At the core, these techniques differ in the regression methods employed to construct
the surrogate models. The polynomial response surface method and the RBF’s use linear regression, while
neural networks use nonlinear regression methods requiring an optimization algorithm.

When using polynomials, the user is faced with the choice of deciding which monomial terms to include. In
addition, polynomials, by way of their nature as Taylor series approximations, are not natural for the
creation of updateable surfaces. This means that if an existing set of point data is augmented by a number of
new points which have been selected in a local subregion (e.g. in the vicinity of a predicted optimum), better
information could be gained from a more flexible type of approximation that will keep global validity while
allowing refinement in a subregion of the parameter space. Such an approximation would provide a more
natural approach for combining the results of successive iterations.

3.1. Neural networks

Neural methods are natural extensions and generalizations of regression methods. Neural networks have
been known since the 1940's, but it took the dramatic improvements in computers to make them practical,
[3]. Neural networks - just like regression techniques - model relationships between a set of input variables
and an outcome. Neural networks can be thought of as computing devices consisting of numerical units
(‘neurons’), whose inputs and outputs are linked according to specific topologies (see the example in Figure
3-1). A neural model is defined by its free parameters - the inter-neuron connection strengths (‘weights’)
and biases. These parameters are typically ‘learned’ from the training data by using an appropriate
optimization algorithm. The training set consists of pairs of input (design) vectors and associated outputs
(responses). The training algorithm tries to steer network parameters towards minimizing some distance
measure, typically the mean squared error (MSE) of the model computed on the training data.
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Several factors determine the predictive accuracy of a neural network approximation and, if not properly
addressed, may adversely affect the solution. For a neural network, as well as for any other data-derived
model, the most critical factor is the quality of training data. In practical cases, we are limited to a given
data set, and the central problem is that of not enough data. The minimal number of data points required for
network training is related to the (unknown) complexity of the underlying function and the dimensionality
of design space. In reality, the more design variables, the more training samples are required. In the
statistical and neural network literature this problem is known as the ‘curse of dimensionality’. Most forms
of neural networks (in particular, feedforward networks) actually suffer less from the curse of
dimensionality than some other methods, as they can concentrate on a lower-dimensional section of the
high-dimensional space. For example, by setting the outgoing weights from a particular input to zero, a
network can entirely ignore that input — see Figure 3-1. Nevertheless, the curse of dimensionality is still a
problem, and the performance of a network can certainly be improved by eliminating unnecessary input
variables.

It is clear that if the number of network free parameters is sufficiently large and the training optimization
algorithm is run long enough, it is possible to drive the training MSE error as close as one likes to zero.
However, it is also clear that driving MSE all the way to zero is not a desirable thing to do. For noisy data,
this may indicate over-fitting rather than good modeling. For highly discrepant training data, zero MSE
makes no sense at all. Regularization means that some constraints are applied to the construction of the
neural model with the goal of reducing the 'generalization error', that is, the ability to predict (interpolate)
the unobserved response for new data points that are generated by a similar mechanism as the observed data.
A fundamental problem in modeling noisy and/or incomplete data is to balance the 'tightness' of the
constraints with the 'goodness of fit' to the observed data. This tradeoff is called the bias-variance tradeoff
in the statistical literature.

A multilayer feedforward network and a radial basis function network are the two most common neural
architectures used for approximating functions. Networks of both types have a distinct layered topology in
the sense that their processing units (‘neurons’) are divided into several groups ('layers'), the outputs of each
layer of neurons being the inputs to the next layer (Figure 3-1).

In a feedforward network, each neuron performs a biased weighted sum of their inputs and passes this value
through a transfer (activation) function to produce the output. Activation function of intermediate (‘'hidden')
layers is generally a Sigmoidal function (Figure 3-2), while network input and output layers are usually
linear (transparent). In theory, such networks can model functions of almost arbitrary complexity, see [4]
and [5]. All parameters in a feedforward network are usually determined at the same time as part of a single
(non-linear) optimization strategy based on the standard gradient algorithms (the steepest descent, RPROP,
Levenberg-Marquardt, etc.). The gradient information is typically obtained using a technique called
backpropagation, which is known to be computationally effective [6]. For feedforward networks,
regularization may be done by controlling the number of network weights (‘model selection’), by imposing
penalties on the weights (‘ridge regression’) [7], or by various combinations of these strategies [8].

A radial basis function network has a single hidden layer of radial units, each actually modeling a response
function, peaked at the center, and monotonically varying outwards (Figure 3-3). Each unit responds (non-
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linearly) to the distance of points from its center. The RBF network output layer is typically linear.
Intuitively, it is clear that a weighted sum of the sufficient radial units will always be enough to model any
set of training data (see Figure 3-4 and Figure 3-5). The formal proofs of this property can be found, for
example, in [9] and [10]. An RBF network can be trained extremely quickly, orders of magnitude faster than
a feedforward network. The training process typically takes place in two distinct stages. First, the centers
and deviations of the radial units (i.e. the hidden layer's weights) must be set; then the linear output layer is
optimized. It is important that deviations are chosen so that RBFs overlap with some nearby units.
Discovering a sub-optimal ‘spread’ parameter typically implies the preliminary experimental stage. If the
RBFs are too spiky, the network will not interpolate between known points (see Figure 3-6). If the RBFs are
very broad, the network loses fine detail (

Figure 3-7). This is actually another manifestation of the over/under-fitting dilemma.

In the final shape, affer training, a multilayer neural network with linear output (Figure 3-1) can resemble a
general linear regression model - a least squares approximation. The major differences lie in the choice of
basis functions and in the algorithms to construct the model (i.e. to adjust model's free parameters).
Techniques to identify the systematical errors in the model and to estimate the uncertainty of model’s
prediction of future observations also become more complex. Unlike polynomial regressors, hidden neurons
do not lend themselves to immediate interpretations in terms of input (design) variables.

The next sections discuss various goodness-of-fit assessment approaches applicable to neural networks. We
also discuss how to estimate the variance of the neural model and how to compute derivatives of a neural
network with respect to any of its inputs. Two neural network types, feedforward and radial basis, are
considered.

network
oUtput

weights and weights and
biases of bias of
hidden layer output layer

Figure 3-1: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with activation
function f.
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Figure  3-2:  Sigmoid transfer function
y=1/1+exp(-x)) typically used with feedforward

networks
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Figure 3-3: Radial basis transfer function y=exp(-
2
x’)

1.5

Figure 3-4: Weighted sum of radial basis transfer
Sfunctions. Three radial basis functions (dashed
lines) are scaled and summed to produce a
function (solid line).

Figure 3-5: A radial basis network approximation
(solid line) of the function, which fits the 21 data
points (plus symbols).
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Figure 3-6: The same 21 data points as in Figure | Figure 3-7: The same 21 data points as in Figure
3-5. Test points reveal that the function has been | 3-5. Approximation with overlapping RBF
overfit. RBF neuron's spread is too small. RBF | neurons. The spread of RBF units is too high.
network could have done better with a higher
spread constant.

3.1.1. Model adequacy checking

Nature is rarely (if ever) perfectly predictable. Real data never exactly fit the model that is being used. One
must take into consideration that the prediction errors not only come from the variance error due to the
intrinsic noise and unreliabilities in the measurement of the dependent variables but also from the systematic
(bias) error due to model mis-specification. According to George E.P. Box's famous maxim, "all models are
wrong, some are useful". To be genuinely useful, a fitting procedure should provide the means to assess
whether or not the model is appropriate and to test the goodness-of-fit against some statistical standard.
There are several error measures available to determine the accuracy of the model. Among them are:

MSE=Y"($,—-»,) /P, (3-1)

i

RMS =~/MSE;  nMSE = MSE/&*;  nRMS = RMS/&”. (3-2)
P A —_— 2 P ~ T —_—
> (5, -7) P i RO

RP=—L———, and R=—"-" - : (3-3)

> -3 S0, -y

i i i

where P denotes the number of data points, y; is the observed response value (’target value’), y, is the

model’s prediction of response, )7/ is the mean (average) value of y, y is the mean (average) value of y,
and G’is given by
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P
2 Z(yi_.f/i)z
=

6 =t =& . (3-4)
P-L  P-L

Mean squared error (MSE for short) and root mean squared error (RMS) summarize the overall model error.
Unique or rare large error values can affect these indicators. Sometimes, MSE and RMS measures are
normalized with sample variance of the target value (see formulae for nMSE and nRMS) to allow for
comparisons between different datasets and underlying functions. R* and R are relative measures. The
coefficient of multiple determination R* ("R-square’) is the explained variance relative to the total variance
in the target value. This indicator is widely used in linear regression analysis. R* represents the amount of
response variability explained by the model. R is the correlation coefficient between the network response
and the target. It is a measure of how well the variation in the output is explained by the targets. If this
number is equal to 1, then there is a perfect correlation between targets and outputs. Outliers can greatly
affect the magnitudes of correlation coefficients. Of course, the larger the sample size, the smaller is the
impact of one or two outliers.

Training accuracy measures (MSE, RMS, R, R, etc.) are computed along all the data points used for
training. As mentioned above, the performance of a good model on the training set does not necessarily
mean good prediction of new (unseen) data. The objective measures of the prediction accuracy of the model
are test errors computed along independent testing points (i.e. not training points). This is certainly true
provided that we have an infinite number of testing points. In practice, however, test indicators are usable,
only if treated with appropriate caution. Actual problems are often characterized by the limited availability
of data, and when the training datasets are quite small and the test sets are even smaller, only quite large
differences in performance can be reliably discerned by comparing training and test indicators.

The generalized cross-validation (GCV) [11] and Akaike’s final prediction error (FPE) [12] provide
computationally feasible means of estimating the appropriateness of the model. The k-fold cross-validation
(denoted here as CV-k), generalized cross-validation (GCV) [11] and Akaike's final prediction error (FPE)
[12] provide computationally feasible means of estimating the appropriateness of the model.

GCV and FPE estimates combine the training MSE with a measure of the model complexity:

MSE ., = MSE/(1-v/P), (3-5)
RMS ., = |MSE ., , nMSE ., = MSE ., |6*;  nRMS,., = RMS., /&> . (3-6)
MSE,,, = MSE(1+v/P)/(1-v/P), (3-7)
RMS,,, = \|MSE,,, , aMSE,,, = MSE,,. /6%,  nRMS,,, = RMS,,, /5" (3-8)

where vis the (effective) number of model parameters.
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In theory, GCV estimates should be related to v. As a very rough approximation to v, we can assume that all
of the network free parameters are well determined so that v= M, where M is the total number of network
weights and biases. This is what we would expect to be the case for large P so that P >> M. Note that GCV
is undefined when v is equal to the number of training points (). In theory, GCV and FPE estimates should
be related to the effective number of model's parameters v. Techniques to assess v for neural networks will
be discussed later. As a very rough approximation, we can assume that all of the network free parameters
are well determined so that v = M, where M is the total number of network weights and biases. This is what
we would expect to be the case for large P so that P >> M. Note that both GCV and FPE are undefined
when the effective number of model's parameters (v) is equal to the number of training points (P). GCV and
FPE measures are asymptotically equivalent for large P.

In k-fold cross-validation the training dataset is divided into k& randomly selected disjoint subsets of roughly
equal size P¥. The model is trained and tested & times. Each time j=1,...,k it is trained on all data except

for points from subset j and then tested on j-th subset. Formally, let :(yl.(j)),i=1,...,P(j) be the
prediction of such a model for the points from subset j. Then the CV-k estimates of accuracy

MSE,, , =122 (3-9)

RMS,, , =|MSE,, ,,nMSE,, , = MSE,, ,/6*;  nRMS,, , = RMS,, ,/&*.(3-10)

The CV estimate is a random number that depends on the division into folds. Repeating cross-validation
multiple times using different splits into folds provides a better approximation to complete N-fold cross-
validation (leave-one-out). Leave-one-out measure is almost unbiased, but for typical real world datasets it
has high variance, leading to unreliable estimates. Small datasets are simply not suitable for CV estimates,
since data distribution can change considerably after we separate out even a small portion of data. In
addition, the CV approach is usually too expensive. The question is whether the advantages of CV (if any)
are big enough to justify the computational cost of training multiple networks rather than one.

Anyway, no accuracy estimation can be correct all the time. Most probably it is impossible to evaluate a
model by means of a single descriptive measure. We should always consider several accuracy measures
when deciding on the appropriateness of the model, especially if this model is trained on noisy and/or
incomplete data. In certain cases the crucial phase of integrating disparate measures into a single judgment
could be delegated to a statistical decision-making tool. Of course, when the quantity of data required for
statistical methods is simply not available, human experts' knowledge should be used for the really big
decisions.

3.1.2. Feedforward neural networks

Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The
outputs of each layer of neurons are the inputs to the next layer. In a feedforward network, the activation
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function of intermediate ("hidden’) layers is generally a sigmoidal function (Figure 3-3), network input and
output layers being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and
a linear output unit. For a given input vector Xx=(x,,.,x,) and network weights

W= (WO,WL...,WH Wi Wisees Wi ), the output of the network is:

" K
y(x, W) =W, +2th[Wh0 +Zthxkj’ (3-11)
= =1

where f(x)= 1/(1 + e”‘)

The computational graph of Eq. (3-11) is shown schematically in Figure 3-1. The extension to the case of
more than one hidden layers can be obtained accordingly. It is straightforward to show that the derivative of
the network Eq. (3-11) with respect to any of its inputs is given by:

aj} H , H
a—=ZWhthf W+ W, Lk=1..K. (3-12)
Xe  hml h=1

Neural networks have been mathematically shown to be universal approximators of continuous functions
and their derivatives (on compact sets) [4]. In other words, when a network (5) converges towards the
underlying function, all the derivatives of the network converge towards the derivatives of this function.

Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest descent,
RPROP, Levenberg-Marquardt, etc.) are applied to adjust FF network’s weights and biases. For neural
networks, the gradients are easily obtained using a chain rule technique called ‘backpropagation’ [6]. The
second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized
FF neural networks (up to several hundred adjustable weights) [3]. However, when training larger networks,
the first-order RPROP algorithm becomes preferable for computational reasons [13].

Regularization: For FF networks, regularization may be done by controlling the number of network weights
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations of
these strategies ([7], [8]). Model selection requires choosing the number of hidden units and, sometimes, the
number of network hidden layers. Most straightforward is to search for an ’optimal’ network architecture
that minimizes MSEgcy, MSErpe or MSEcy. Often, it is feasible to loop over 1, 2,... hidden units and
finally select the network with the smallest GCV error. In any event, in order for the GCV measure to be
applicable, the number of training points P should not be too small compared to the required network size
M.

Over-fitting: To prevent over-fitting, it is always desirable to find neural solutions with the smallest number
of parameters. In practice, however, networks with a very parsimonious number of weights are often hard to
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the
chance of becoming stuck in local minima or on plateaus [14]. Weight decay regularization involves
modifying the performance function F, which is normally chosen to be the mean sum of squares of the
network errors on the training set (Eq. 3-1). When minimizing MSE (Eq. 3-1) the weight estimates tend to

LS-OPT Version 4.2 57



CHAPTER 3: 2BMETAMODELING TECHNIQUES

be exaggerated. We can impose a penalty for this tendency by adding a term that consists of the sum of
squares of the network weights (see also (Eq. 3-1)):

F=BE, +0akE,, (3-13)

where

P M

Ey :O'SZ(J’}i_yi)Z’ Ey :O'SZVVI‘Z»

i=1 i=1

where M is the number of weights and P the number of points in the training set.

Notice that network biases are usually excluded from the penalty term Ey. Using the modified performance
function (Eq. 3-13) will cause the network to have smaller weights, and this will force the network response
to be smoother and less likely to overfit. This eliminates the guesswork required in determining the
optimum network size. Unfortunately, finding the optimal value for & and £ is not a trivial task. If we make
a /[ too small, we may get over-fitting. If /f is too large, the network will not adequately fit the training
data. A rule of thumb is that a little regularization usually helps [15]. It is important that weight decay
regularization does not require that a validation subset be separated out of the training data. It uses all of the
data. This advantage is especially noticeable in small sample size situations. Another nice property of
weight decay regularization is that it can lend numerical robustness to the Levenberg-Marquardt algorithm.
The L-M approximation to the Hessian of Eq. (3-13) is moved further away from singularity due to a
positive addend to its diagonal:

A=H+al (3-14)

where

P

H=BVVE, ~ Zg(x(t) )g(x([) )T,

i=1

T
& &

g(x)=| 2.2 |
oW ow,,

In [3], [16], [17]and [18] the Bayesian (’evidence framework’ or ’type II maximum likelihood’) approach to
regularization is discussed. The Bayesian re-estimation algorithm is formulated as follows. At first, we
choose the initial values for « and f. Then, a neural network is trained using a standard non-linear
optimization algorithm to minimize the error function (Eq. 3-13). After training, i.e. in the minimum of Eq.
(3-13), the values for « and f are re-estimated, and training restarts with the new performance function.
Regularization hyper-parameters are computed in a sequence of 3 steps:
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v= (3-15)

where Ay, m = 1,...,M are (positive) eigenvalues of matrix H in Eq. (3-14), v is the estimate of the effective
number of parameters of a neural network,

a=V/2E,;

B:(P—v)/fZED.

It should be noted that the algorithm (Eq. 3-15) relies on numerous simplifications and assumptions, which
hold only approximately in typical real-world problems [19]. In the Bayesian formalism a trained network is
described in terms of the posterior probability distribution of weight values. The method typically assumes a
simple Gaussian prior distribution of weights governed by an inverse variance hyper-parameter

o= I/Gi,eights . If we present a new input vector to such a network, then the distribution of weights gives rise

to a distribution of network outputs. There will be also an addend to the output distribution arising from the

assumed o . =1/p Gaussian noise on the output variables:

noise

y=y(x)+ (0,02, )

With these assumptions, the negative log likelihood of network weights W given P training points
x(1), ..., x(P) is proportional to MSE (Eq. 3-1)), i.e., the maximum likelihood estimate for W is that which
minimizes (Eq. 3-1) or, equivalently, Ep. In order for Bayes estimates of & and £ to do a good job of
minimizing the generalization in practice, it is usually necessary that the priors on which they are based are
realistic. The Bayesian formalism also allows us to calculate error bars on the network outputs, instead of
just providing a single ’best guess’ output y . Given an unbiased model, minimization of the performance

function (Eq. 3-1) amounts to minimizing the variance of the model. The estimate for output variance G;

X

of the network at a particular point x is given by:
o} ~g(x)’ A7g(x) (3-16)

Equation (3-16) is based on a second-order Taylor series expansion of Eq. (3-13) around its minimum and
assumes that 9y /0W is locally linear.

Variability of Feedforward neural networks

Neural networks have a natural variability because of the following reasons [20]:
1. Local behavior of the neural network training algorithms

2. Uncertainty (noise) in the training data.
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The neural network training error function usually has multiple local and global minima. With different
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad)
local minima. The larger the amount of noise in the data, the larger is the difference between these NN
solutions. The user is allowed to specify a neural network committee to find the average net and quantify the
variability (Section 13.1.3). The starting weights for network training are randomly generated using a user-
specified seed to ensure repeatability (see Section 2.2.7).

3.1.3. Radial basis function networks

A radial basis function neural network has a distinct 3-layer topology. The input layer is linear (transparent).
The hidden layer consists of non-linear radial units, each responding to only a local region of input space.
The output layer performs a biased weighted sum of these units and creates an approximation of the input-
output mapping over the entire space.

While several forms of radial basis function are considered in the literature, the most common functions are
the Hardy’s multi-quadrics and the Gaussian basis function. These are given as:

Hardy’s multi-quadric:

gh(xl,...,xK)=1/1+ir2/ci , (3-17)

Gaussian:

gh(xl,...,xK)=eXp[—r2/ZGi] (3-18)

K
The activation of 4™ radial basis function is determined by the Euclidean distance r = Z(xk W, )2
k=1

between the input vector x = (x,,...,x, ) and RBF center W, = (W,,,...,W,,) in K-dimensional space. The

Gaussian basis function is a localized function (peaked at the center and descending outwards) with the
property that g, — 0 as » — . Parameter 6, controls the smoothness properties of the RBF unit.

For a given input vector x the output of RBF network with K inputs and a hidden layer with H basis
function units is given by (see also Egs. 3-17 and 3-18):

H

Y(,W)=W,+> W, f(p,) (3-19)

h=1

where

K

Py = WhOZ(xk —Wy )2; Wi = 1/(2(7/3> f(p): exp(—p).

k=1
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Notice that hidden layer parameters W, = (,,,....W,, ) represent the center of 4™ radial unit, while W,
corresponds to its deviation. Parameters W, and W,,...,W, are the output layer's bias and weights,
respectively.

A linear super-position of localized functions as in (13) is capable of universal approximation. The formal
proofs of this property can be found, for example, in [9] and [10]. It is straightforward to show that the
derivative of the network (13) with respect to any of its inputs is given by:

oy & ,
—— =Y W W 205, =Wy f (p,) k=1,.,K, (3-20)

ox, =

where f' denotes the first derivative of the transfer function f : f (p) = —exp(—p).

Theory tells us that when a network (Eq. 3-19) converges towards the underlying function, all the
derivatives of the network converge towards the derivatives of this function.

A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be interpreted
in a way which allows the hidden layer parameters (i.e. the parameters governing the radial functions) to be
determined by semi-empirical, unsupervised training techniques. Accordingly, although a radial basis
function network may require more hidden units than a comparable feedforward network, RBF networks
can be trained extremely quickly, orders of magnitude faster than FF networks.

For RBF networks, the training process generally takes place in two distinct stages. First, the centers and
deviations of the radial units (i.e. hidden layer parameters W,,,...,W,, and W,,,...,W,,) must be set. All the

basis functions are then kept fixed, while the linear output layer (i.e., W,,...,W,, ) is optimized in the second
phase of training. In contrast, all of the parameters in a FF network are usually determined at the same time
as part of a single training (optimization) strategy. Techniques for selecting W,,,...,W,, and W,,,...,W,,, are

discussed at length in following paragraphs. Here we shall assume that the RBF parameters have already
been chosen, and we focus on the problem of optimizing the output layer weights.

Mathematically, the goal of output layer optimization is to minimize a performance function, which is
normally chosen to be the mean sum of squares of the network errors on the training set (Eq. 3-1). If the
hidden layer's parameters W, W,,,...,W,, in (3.4-2) are kept fixed, then the performance function (Eq. 3-1)

is a quadratic function of the output layer' parameters W,,...,W,, and its minimum can be found in terms of

the solution of a set of linear equations (e.g., using singular value decomposition). The possibility of
avoiding the need for time-consuming and costly non-linear optimization during training is one of the major
advantages of RBF networks over FF networks. However, when the number of optimized parameters
(H +1, in our case) is small enough, non-linear optimization (Levenberg-Marquardt, etc.) may also be cost-
effective.
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It is clear that the ultimate goal of RBF neural network training is to find a smooth mapping which captures
the underlying systematic aspects of the data without fitting the noise. However, for noisy data, the exact
RBF network, which passes exactly through every training data point, is typically a highly oscillatory
function. There are a number of ways to address this problem. By analogy with FF network training, one
can add to (Eq. 3-1) a regularization term that consists of the mean of the sum of squares of the optimized
weights. In conventional curve fitting this form of regularization is called ridge regression. The sub-optimal
value for hyperparameters a and f in (3-13) can be found by applying Bayesian re-estimation formulae (Eq.
3-14) - (Eq. 3-15). It is also feasible to iterate over several trial values of @ and f.

For RBF networks, however, the most effective regularization methods are probably those pertaining to
selecting radial centers and deviations in the first phase of RBF training. The commonly held view is that
RBF centers and deviations should be chosen so as to form a representation of the probability density of the
input data. The classical approach is to set RBF centers equal to all the input vectors from the training
dataset. The width parameters o, are typically chosen — rather arbitrarily — to be some multiple S_ of the
average spacing between the RBF centers (e.g. to be roughly twice the average distance). This ensures that
the RBF's overlap to some degree and hence give a relatively smooth representation of data.

To simplify matters, the same value of the width parameter o, for all RBF units is usually considered.
Sometimes, instead of using just one value for all RBF's, each RBF unit's deviation o, is individually set to
the distance to its N << N nearest neighbors. Hence, deviations o, become smaller in densely populated
areas of space, preserving fine detail, and are higher in sparse areas of space, interpolating between points
where necessary. Again the choice of N_ is somewhat arbitrary. RBF networks with individual radial
deviations o, can be particularly useful in situations where data tend to cluster in only a small subregion of

the design space (for example, around the optimum of the underlying system which RSM is searching for)
and are sparse elsewhere.

One must take into consideration that after the first phase of RBF training is over, there's no way to
compensate for large inaccuracies in radial deviations o, by, say, adding a regularization term to the
performance function. If the basis functions are too spiky, the network will not interpolate between known
points, and thus, will lose the ability to generalize. If the Gaussians are very broad, the network is likely to
lose fine detail. The popular approach to find a sub-optimal spread parameter is to loop over several trial
values of S, and N_, and finally select the RBF network with the smallest GCV (FPE, CV-k) error. This is

somewhat analogous to searching for an optimal number of hidden units of a feedforward neural network.

In order to eliminate all the guesswork required in determining RBF deviations, it might seem natural to
treat W,,,....W,, (0,,...,0,, to be precise) in (Eqgs. 3-17 and 3-18) as adjustable parameters, which are

optimized in the second phase of training along with the output layer's weights and bias. Practical
applications of this approach, however, are rare. The reason may be that it requires the use of a non-linear
optimization method in combination with a sophisticated regularization scheme specially designed so as to
guarantee that the radial functions will remain localized.

LS-OPT Version 4.2 62



CHAPTER 3: 2BMETAMODELING TECHNIQUES

It should be noted that RBF networks may have certain difficulties if the number of RBF units (#) is large.

This is often the case in multidimensional problems. The difficulty arises because for a large number of
RBF's, a large number of training samples are required in order to ensure that the neural network parameters
are properly determined. A large number of RBF units also increase the computation time spent on
optimization of the network output layer and, consequently, the RBF architecture loses its main (if not the
only one) advantage over FF networks — fast training.

Radial basis function networks actually suffer more from the curse of dimensionality than feedforward
neural networks. To explain this statement, consider the effect of adding an extra, perfectly spurious input
variable to a network. A feedforward network can learn to set the outgoing weights of the spurious input to
zero, thus ignoring it. An RBF network has no such luxury: data in the relevant lower-dimensional space get
‘smeared’ out through the irrelevant dimension, requiring larger numbers of units to encompass the
irrelevant variability.

In principle, the number of RBF's (H) need not equal the number of training samples (P), and RBF units are
not constrained to be centered on the training data points. In fact, when data contain redundant information,
we do not need all data points in learning. One simple procedure for selecting RBF centers is to set them
equal to a random subset of the input vectors from the training set. Since they are randomly selected, they
will 'represent' the distribution of the (redundant) training data in a statistical sense. Of course, A and P
should not be too small in this case.

It is clear, however, that the optimal choice of RBF centers based on the input data alone need not be
optimal for representing the input-output mapping as reflected in the observed data. In order to overcome
these limitations, the selection procedure should take into account the output values, or at least, approximate
estimates (assumptions) of the global behavior of the underlying system. The common neural term for such
techniques involving output values is ‘active learning’. In the context of active learning, RBF networks can
be thought of as DOE metamodels analogous to polynomials, [16] and [19]. Given a candidate list of points,
an active learner is searching for the 'best' points in order to position RBF centers. Popular in neural
applications is to treat RBF active learning as 'pruning' technique intended for identifying critical data and
discarding redundant points, or more accurately, not selecting some training points as RBF centers. RBF
active learning methods are being successfully applied to approximate huge datasets that come from natural
stochastic processes. It is questionable, however, whether active learning can be useful for non-redundant
datasets, specifically for RSM design sets generated by performing DOE analysis based on low-order
polynomial metamodels.

To briefly summarize, parameters governing radial units (radial centers and deviations) play a key role in
generalization performance of a RBF model. The appropriate selection of RBF centers implies that we
choose a minimal number of training data points that carry enough information to build an adequate input-
output representation of the underlying function. Unfortunately, this is easier said than done. Indeed, there is
a general agreement that selecting RBF centers and deviations is more Art than Science.
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3.2. Kriging*

Kriging is named after D. G. Krige [22], who applied empirical methods for determining true ore grade
distributions from distributions based on sampled ore grades. In recent years, the Kriging method has found
wider application as a spatial prediction method in engineering design. Detailed mathematical formulations
of Kriging are given by Simpson [23] and Bakker [24].

The basic postulate of this formulation [23] is:

y(x)= f(x)+Z(x), (3-21)

where y is the unknown function of interest, f{x) is a known polynomial and Z(x) is the stochastic
component with mean zero and covariance:

Cov[Z(x'),Z(x¥)] = o R([R(x'.¥)]). (3-22)
With L the number of sampling points, R is the L x L correlation matrix with R(x' X)) the correlation

function between data points x’' and ¥’. R is symmetric positive definite with unit diagonal.

Two commonly applied correlation functions used are:

1. Exponential: R = ﬁexp(— ®k|dk|) and
k=1

2. Gaussian: R= ﬁexp(— ®kdkz)

k=1

Where n is the number of variables and d; = x;' — x;’, the distance between the K™ components of points x
and X’ . There are n unknown O -values to be determined. The default function in LS-OPT is Gaussian.

Once the correlation function has been selected, the predicted estimate of the response y(x) is given by:

§= 4 +r'®R'(y-£4) (3-23)

where r’(x) is the correlation vector (length L) between a prediction point x and the L sampling points, y
represents the responses at the L points and f is a L-vector of basis functions (ones, if f(x) is taken as a
constant). One can choose either a constant, linear, or quadratic basis function in LS-OPT. The default
choice is the constant basis function.

The vector r and scalar ,@ are given by:
r'(x) = [R(x),R(xx%),....R(xH]!

ﬁ — (fTR —lﬂ—lfTR —ly‘
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The estimate of variance from the underlying global model is:
A 1 Yo ~
6’ =Z(y—fﬁ) L)

The maximum likelihood estimates for ®,, kK = 1,..., n can be found by solving the following constrained
maximization problem:

max ®(®) = —%[L ln(&2)+ 1n|R|l subjectto ®, >0 Ak.
where both & and |R|| are functions of @ . This is the same as minimizing

G’ R|(1/"), subject to:® >0.

This optimization problem is solved using the real-coded genetic algorithm (Section 4.8). A small constant
number is adaptively added to the diagonal of matrix R to avoid ill-conditioning. The net effect is that the
approximating functions might not interpolate the observed response values exactly. However, these
observations are still closely approximated.

3.3. Concluding remarks: which metamodel?

There is little doubt that the polynomial-based response surfaces are very robust, especially for sequential
optimization methods. A negative aspect of using polynomials is the fact that the user is obliged to choose
the order of polynomial. Also, a greater possibility exists for bias error of a nonlinear response. They are
also, in most cases, not suitable for updating in sequential methods. Linear approximations may only be
useful within a certain subregion and therefore quadratic polynomials or other higher order approximations
such as RBF networks may be required for greater global accuracy. However the linear SRSM method has
proved to be excellent for sequential optimization and can be used with confidence [25][26][27].

RBF Networks appear to be generally the best of the neural networks metamodels. They have the following
advantages:

o Higher prediction accuracy due to built-in cross validation. Although FF networks may appear more
accurate due to a smaller fitting error (RMSE), their prediction error is generally larger than that of
RBF networks. An appealing plot of predicted vs. computed responses showing the training points or
R? values approaching unity or small RMS error values should not be construed as representing a
higher accuracy.

o Higher speed due to their linear nature. When sizable FF committees (e.g. with 9 members) are used
they may be vastly more expensive to construct than RBF networks. This is true especially for a
relatively small number of variables.

o Relative independence of the calculation time with respect to the number of functions. Although
there is a slight overhead which depends on this number, the user does not have to be as careful with
limiting the number of responses.
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FF Neural Networks function well as global approximations and no serious deficiencies have been observed
when used as prescribed in Section 4.5. FF networks have been used for sequential optimization [27] and
can be updated during the process. A more recent study [28] which focuses on the accuracy comparison for
FF neural networks and RBF networks for different types of optimization strategies concluded that, for
crashworthiness analysis, RBF and FF metamodels are mostly similar in terms of the accuracy of a large
number of checkpoint results. However, the same study showed that Neural Networks are sometimes better
than RBF networks for smooth problems. As mentioned earlier, RBF networks have a distinct speed
advantage. Reference [28] also assesses the use of FF committees and concludes that, although expensive,
there are some cases where they may be necessary.

Although the literature seems to indicate that Kriging is one of the more accurate methods [23], there is
evidence of Kriging having fitting problems with certain types of experimental designs [29]. Kriging is very
sensitive to noise, since it interpolates the data [30]. The authors of this manual have also experienced fitting
problems with non-smooth surfaces (Z(x) observed to peak at data points) in some cases, apparently due to
large values of @ that may be due to local optima of the maximum likelihood function. The model
construction can be very time consuming [30] (also experienced with LS-OPT). Furthermore, the slight
global altering of the Kriging surface due to local updating has also been observed [27]. Some efforts have
been made in LS-OPT to reduce the effect of clustering of points.

Reference [27] compares the use of three of the metamodeling techniques for crashworthiness optimization.
This paper, which incorporates three case studies in crashworthiness optimization, concludes that while
RSM, NN and Kriging were similar in performance, RSM and NN were shown to be the most robust for this
application. RBF networks were not available at the time of that study and Kriging has also been improved
in the mean time.
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4. Optimization

4.1. Theory of optimization

Optimization can be defined as a procedure for “achieving the best outcome of a given operation while
satisfying certain restrictions” [1]. This objective has always been central to the design process, but is now
assuming greater significance than ever because of the maturity of mathematical and computational tools
available for design.

Mathematical and engineering optimization literature usually presents the above phrase in a standard form
as

min f(x)
subjectto : »
g,(x)<0;j=12,..,m “-1)
h(x)=0; k=12,..,1.
where f, g and 4 are functions of independent variables xi, x2, x3, ..., x,. The function f, referred to as the

cost or objective function, identifies the quantity to be minimized or maximized. The functions g and /4 are
constraint functions representing the design restrictions. The variables collectively described by the vector x
are often referred to as design variables or design parameters.

The two sets of functions g; and /; define the constraints of the problem. The equality constraints do not
appear in any further formulations presented here because algorithmically each equality constraint can be
represented by two inequality constraints in which the upper and lower bounds are set to the same number,

e.g.
h(x)=0~0<h, (x)<0 (4-2)

Equations (2.1) then become

min f(x)
subjectto: 4-3)
g;(x)<0;/=12,..,m.
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The necessary conditions for the solution x to Eq. (2.3) are the Karush-Kuhn-Tucker optimality
conditions:

VIAx)+1"Vg(x)=0
A g(x)=0

g(x)<0

A>0.

(4-4)

These conditions are derived by differentiating the Lagrangian function of the constrained minimization
problem

L(x) = f(0)+2g(x). 4-5)
and applying the conditions
V' fox >0 (optimality) (4-6)
and
Vigox <0 (feasibility) (4-7)
to a perturbation ox . A ; represents the Lagrange multiplier which may be nonzero only if the

. . . . . * * . . . .
corresponding constraint is active, i.e. g;(x )=0. For x to be a local constrained minimum, the Hessian

of the Lagrangian function, V> f(x )+ A’ V>g(x") on the subspace tangent to the active constraint g must

be positive definite at x .

These conditions are not used explicitly in LS-OPT and are not tested at optima. They are more of
theoretical interest in this manual, although the user should be aware that some optimization algorithms are
based on these conditions.

4.2. Normalization of constraints and variables

It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by
normalization.

Constraints. In LS-OPT, a typical constraint is formulated as follows:

L, <g,(x)<U;;j=12,..m. (4-8)

This inequality represents two constraints:
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L, <g;(x);j=12,.,m. (4-9)
g; (x) < U,sj= 1,2,...,m.
which, when normalized, become:

1< =12,...,m. (4-10)

g;(x) ;
Lj

g,;(x)

<Lj=12,.,m.

J
A feature is provided in the GUI to automatically switch on constraint scaling using a single check box. As
g,;(x)
j
bounds, L; and U, are used as default scale factors, but can be selected.

in Equation 1< s =12,...,m. (4-10), the values of the

Variables. The design variables have been normalized internally by scaling the design space [x; ; xy] to
[0;1], where x;, is the lower and xy the upper bound. The formula

g, _ N T X (4-11)

Xy —Xig

is used to transform each variable x; to a normalized variable, &, .

4.3. Gradient computation and the solution of optimization problems

Solving the optimization problem requires an optimization algorithm. The list of optimization methods is
long and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred
to the texts on optimization, e.g. [1] or [2]. It should however be mentioned that the Sequential Quadratic
Programming method is probably the most popular algorithm for constrained optimization and is considered
to be a state-of-the-art approach for structural optimization [3], [4]. In LS-OPT, the subproblem is optimized
by an accurate and robust gradient-based algorithm: the dynamic leap-frog method [5]. Both these
algorithms and most others have in common that they are based on first order formulations, i.e. they require
the first derivatives of the component functions

df [dx; and dg; /dx,

to construct the local approximations. These gradients can be computed either analytically or numerically.
In order for gradient-based algorithms such as SQP to converge, the functions must be continuous with
continuous first derivatives.
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Analytical differentiation requires the formulation and implementation of derivatives with respect to the
design variables in the simulation code. Because of the complexity of this task, analytical gradients (also
known as design sensitivities) are mostly not readily available.

Numerical differentiation is typically based on forward difference methods that require the evaluation of n
perturbed designs in addition to the current design. This is simple to implement but is expensive and
hazardous because of the presence of round-off error. As a result, it is difficult to choose the size of the
intervals of the design variables, without risking spurious derivatives (the interval is too small) or
inaccuracy (the interval is too large). Some discussion on the topic is presented in Reference [1].

As a result, gradient-based methods are typically only used where the simulations provide smooth
responses, such as linear structural analysis, certain types of nonlinear analysis or smooth metamodels
(mathematical approximations) of the actual response.

In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the
response functions are mostly severely discontinuous. This is mainly due to the presence of friction and
contact. The response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature
of impact phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore,
the accuracy of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical
sensitivity analysis for friction and contact problems is a subject of current research.

It is mainly for the above reasons that researchers have resorted to global approximation methods (also
called metamodels) for smoothing the design response. The art and science of developing design
approximations has been a popular theme in design optimization research for decades (for a review of the
various approaches, see e.g. Reference [6] by Barthelemy). Barthelemy categorizes two main global
approximation methods, namely response surface methodology [7] and neural networks [8]. Since then
other approximations such as Radial Basis Function networks and Kriging have also become popular
metamodels.

In the present implementation, the gradient vectors of general composites based on mathematical
expressions of the basic response surfaces are computed using numerical differentiation. A default interval
of 1/1000 of the size of the design space is used in the forward difference method.

4.4. Optimization methods

The two basic optimization branches employed in LS-OPT are Metamodel-based optimization and Direct
optimization. Metamodel-based optimization is used to create and optimize an approximate model
(metamodel) of the design instead of optimizing the design through direct simulation. The metamodel is
thus created as a simple and inexpensive surrogate of the actual design. Once the metamodel is created, it
can be used to find the optimum or, in the case of multiple objectives, the Pareto Optimal Front.
Metamodeling techniques are discussed in Chapter 3.
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The nature and capacity of the simulation environment as well as the purpose of the optimization effort
typically dictate the strategies for metamodel-based optimization. The strategies depend mostly on whether
the user wants to build a metamodel that can be used for global exploration or whether she is only interested
in finding an optimal set of parameters. An important criterion for choosing a strategy is also whether the
user wants to build the metamodel and solve the problem iteratively or whether he has a "simulation budget"
1.e., a certain number of simulations that he wants to use as effectively as possible to build a metamodel and
obtain as much information about the design as possible.

4.5. Strategies for metamodel-based optimization

There are three recommended strategies for automating the metamodel-based optimization procedure. These
strategies apply to the tasks: Metamodel-based Optimization and RBDO. The setup for each strategy is
explained in detail in Section 19.3.

4.5.1. Single stage

In this approach, the experimental design for choosing the sampling points is done only once. A typical
application would be to choose a large number of points (as much as can be afforded) to build metamodels
such as, RBF networks using the Space Filling sampling method. This is probably the best way of sampling
for Space Filling since the Space Filling algorithm positions all the points in a single cycle.

4.5.2. Sequential strategy

In this approach, sampling is done sequentially. A small number of points is chosen for each iteration and
multiple iterations are requested. The approach has the advantage that the iterative process can be stopped as
soon as the metamodels or optimum points have sufficient accuracy. It was demonstrated in Reference [16]
that, for Space Filling, the Sequential approach had similar accuracy compared to the Single Stage approach,
i.e. 10x30 points added sequentially is almost as good as 300 points. Therefore both the Single Stage and
Sequential Methods are good for design exploration using a surrogate model. For instance when
constructing a Pareto Optimal Front, the use of a Single Stage or Sequential strategy is recommended in lieu
of a Sequential strategy with domain reduction (see Section 4.5.3).

Both the previous strategies work better with metamodels other than polynomials because of the flexibility
of metamodels such as neural networks to adjust to an arbitrary number of points.

4.5.3. Sequential strategy with domain reduction

This approach is the same as that in 4.5.2 but in each iteration the domain reduction strategy is used to
reduce the size of the subregion. During a particular iteration, the subregion is used to bind the positions of
new points. This method is typically the only one suitable for polynomials. There are two approaches to
Sequential Domain Reduction strategies. The first is global and the second, local.
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Sequential adaptive metamodeling (SAM)

As for the sequential strategy in Section 4.5.2 without domain reduction, sequential adaptive sampling is
done and the metamodel constructed using all available points, including those belonging to previous
iterations. The difference is that in this case, the size of the subregion is adjusted (usually reduced) for each
iteration (see Section 4.6). This method is good for converging to an optimum and moderately good for
constructing global approximations for design exploration such as a Pareto Optimal front. The user should
however expect to have poorer metamodel accuracy at design locations remote from the current optimum.

Sequential response surface method (SRSM)

SRSM is the original LS-OPT automation strategy of Section 4.6 and allows the building of a new response
surface (typically linear polynomial) in each iteration. The size of the subregion is adjusted for each
iteration (see Section 4.6). Points belonging to previous iterations are ignored. This method is only suitable
for convergence to an optimum and should not be used to construct a Pareto optimal front or do any other
type of design exploration. Therefore the method is ideal for system identification (see Section 5.3).

4.6. Sequential response surface method (SRSM)

The purpose of the SRSM method is to allow convergence of the solution to a prescribed tolerance.

The SRSM method [15] uses a region of interest, a subspace of the design space, to determine an
approximate optimum. A range is chosen for each variable to determine its initial size. A new region of
interest centers on each successive optimum. Progress is made by moving the center of the region of interest
as well as reducing its size. Figure 4-1 shows the possible adaptation of the subregion.

A pan A Zzoom A pan & zoom
X1 . U0 0
7 < subregion'” T "Nt - range r;
x(O) x©
® [ ] {
T L) T x4 A of
x 0 1 \
% xW=x range r1 "
subregion®
> > >
(a) X2 (b) X2 (c) X

Figure 4-1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination
of panning and zooming

The starting point x'” will form the center point of the first region of interest. The lower and upper bounds
(x™°,x®) of the initial subregion are calculated using the specified initial range value '” so that

i i
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x"0 =x -0.57" and x"°* =x” +0.5¢r7; i=1,..,n (4-12)

1

where 7 is the number of design variables. The modification of the ranges on the variables for the next
iteration depends on the oscillatory nature of the solution and the accuracy of the current optimum.

Oscillation: A contraction parameter y is firstly determined based on whether the current and previous

designs x*’ and x*™ are on the opposite or the same side of the region of interest. Thus an oscillation
indicator ¢ may be determined in iteration k as

c® =d®g* (4-13)
where

di(k) — 2A)Ci(k) /ri(k); Axi(k) — xi(k) _xi(k_l);di(k) c [_1,1] (4_14)
The oscillation indicator (purposely omitting indices i and k) is normalized as ¢ where

c= \/Hsign(c). . (4-15)
The contraction parameter y is then calculated as

7 =0.5( o 1+ ) +7,,,(1-0)) - (4-16)

See Figure 4-2. The parameter y, . is typically 0.5-0.7 representing shrinkage to dampen oscillation,

whereas vy, represents the pure panning case and therefore unity is typically chosen.
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Figure 4-2: The sub-region contraction rate A as a function of the oscillation indicator ¢ and the
absolute move distance |d|

Accuracy: The accuracy is estimated using the proximity of the predicted optimum of the current iteration to
the starting (previous) design. The smaller the distance between the starting and optimum designs, the more
rapidly the region of interest will diminish in size. If the solution is on the bound of the region of interest,
the optimal point is estimated to be beyond the region. Therefore a new subregion, which is centered on the
current point, does not change its size. This is called panning (Figure 4-1(a)). If the optimum point coincides
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure 4-1(b)). Both
panning and zooming may occur if there is partial movement (Figure 4-1(c)). The range »“™" for the new

subregion in the (k + 1)-th iteration is then determined by:

rEY =0 kWi =1,..,m; k =0,..., niter (4-17)

i

where A, represents the contraction rate for each design variable. To determine A,,d* is incorporated by

scaling according to a zoom parameter 1 that represents pure zooming and the contraction parameter y to
yield the contraction rate

Ay =n+d )y —m) (4-18)

for each variable (see Figure 4-2).

When used in conjunction with neural networks or Kriging, the same heuristics are applied as described
above. However the nets are constructed using all the available points, including those belonging to
previous iterations. Therefore the response surfaces are progressively updated in the region of the optimal
point.

Refer to Section 19.4.1 for the setting of parameters in the iterative Sequential Response Surface Method.

4.7. Leapfrog optimizer for constrained minimization (LFOPC)

The optimization algorithm used to solve the approximate subproblem is the LFOPC algorithm of Snyman
[5]. It is a gradient method that generates a dynamic trajectory path, from any given starting point, towards a
local optimum. This method differs conceptually from other gradient methods, such as SQP, in that no
explicit line searches are performed.

The original leap-frog method [9] for unconstrained minimization problems seeks the minimum of a
function of n variables by considering the associated dynamic problem of a particle of unit mass in an
n-dimensional conservative force field, in which the potential energy of the particle at point x(¢) at time ¢ is
taken to be the function f{x) to be minimized.
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The solution to the constrained problem may be approximated by applying the unconstrained minimization
algorithm to a penalty function formulation of the original algorithm. The LFOPC algorithm uses a penalty
function formulation to incorporate constraints into the optimization problem. This implies that when
constraints are violated (active), the violation is magnified and added to an augmented objective function,
which is solved by the gradient-based dynamic leap-frog method (LFOP). The algorithm uses three phases:
Phase 0, Phase 1 and Phase 2. In Phase 0, the active constraints are introduced as mild penalties through the
pre-multiplication of a moderate penalty parameter value. This allows for the solution of the penalty
function formulation where the violation of the (active) constraints are pre-multiplied by the penalty value
and added to the objective function in the minimization process. After the solution of Phase 0 through the
leap-frog dynamic trajectory method, some violations of the constraints are inevitable because of the
moderate penalty. In the subsequent Phase 1, the penalty parameter is increased to more strictly penalize
violations of the remaining active constraints. Finally, and only if the number of active constraints exceed
the number of design variables, a compromised solution is found to the optimization problem in Phase 2.
Otherwise, the solution terminates having reached convergence in Phase 1. The penalty parameters have
default values as listed in the User’s manual (Section 19.9). In addition, the step size of the algorithm and
the termination criteria of the subproblem solver are listed.

The values of the responses are scaled with the values at the initial design. The variables are scaled
internally by scaling the design space to [0; 1] interval. The default parameters in LFOPC (as listed in
Section 19.9) should therefore be adequate. The termination criteria are also listed in Section 19.9.

In the case of an infeasible optimization problem, the solver will find the most feasible design within the
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by
multiple starts from the experimental design points.

4.8. Genetic algorithm

Genetic algorithms are nature inspired search algorithms that emulate the Darwinian principle of ‘survival
of the fittest’. The concept of nature inspired algorithms was first envisaged by Prof. John Holland [10] at
the University of Michigan in mid sixties. Later on this theory gained momentum in engineering
optimization following the work of Prof. David Goldberg [11] and his students. The differences between
genetic algorithms and most conventional optimization methods are:

o GA does not require derivative information to drive the search of optimal points.
o While conventional methods use a single point at each iteration, GA is a population based approach.
o GA is a global optimizer whereas conventional methods may get stuck in local optima.

o GA is a probabilistic optimization method that is, an inferior solution (that may help evolve the
correct design variables structure) may also have a non-zero probability of participating in the search
process.

o The computational cost of using GA may be high compared to derivative based methods.
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4.8.1. Terminology

The Genetic Algorithm imitates nature so some of its terminology is derived from biology:

(@)

Individual — Each design variable vector (often known as solution or design point) is called an
individual.

Population — A group of individuals is called a population. The number of individuals in a
population is termed population size.

Chromosome — The binary string used to encode design variables is called chromosome.
Chromosomes are used with binary encoding or conventional GA only. There is no direct
correspondence of chromosome in real coded GA. The length of a chromosome is the sum of
number of bits assigned to each variable.

Gene — In binary encoding, each bit is called a gene.

Fitness — The fitness of an individual is analogous to objective function. Each individual is assigned
a fitness value based on its objectives and constraints values. The selection process tries to maximize
the fitness of a population. The individual with the highest fitness represents the optimal solution to
a problem.

Generation — A generation (iteration in general optimization lingo) comprises of application of
genetic operators — selection, crossover, and mutation — to create a child population. At the end of
each generation, the child population becomes the parent population.

4.8.2. Encoding

To use the genetic algorithm for optimization, design variables of a mathematical optimization problem are
encoded into a format required by GA. There are two prominent ways of encoding design variables:

o

Binary encoding — The conventional approach of using genetic algorithm is to represent an
optimization problem into a string of binary numbers (chromosomes). The number of bits assigned
to each variable determines the solution accuracy. If p bits are used to represent a variable with
lower and upper bounds x; and x,, respectively, the accuracy of this variable can be (x,-x;)/(2"-1).
While binary encoding is the most natural way to use genetic algorithms, it has two main problems:
1) discretization of a continuous variable causes loss of accuracy in representation (depends on
number of bits), i1) Hamming cliff problem — neighbors in real space may not be close in binary
space such that it may be very difficult to find an optimal solution.

Real encoding — To avoid the problems of using binary representation of real variables, researchers
have suggested directly using real numbers. This required special methods to perform genetic
operations like crossover and mutation.

4.8.3. Algorithm

The steps in a simple genetic algorithm are illustrated with the help of Figure 4-3.
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Figure 4-3: Simple genetic algorithm.

Firstly, problem-specific GA parameters like population size N,,,, type of encoding, number of bits per
variables for binary coding, number of generations are defined.

Initialization

Next, the population is randomly initialized i.e., binary chromosomes or real variable vectors for N,
individuals are generated randomly.

Function evaluation

For binary encoding, each chromosome (binary string) is decoded to corresponding design variable
vector. Next, objective functions, constraints, and constraint violation of each individual in parent
population is evaluated and accordingly fitness of each individual is assigned.

Selection or reproduction operator

Selection operator is used to identify individuals with high fitness and to form a mating pool of size
Nyop- This operator reduces diversity in the population by filtering out low fitness schema. Many
reproduction operators are introduced in literature. Three selection operators implemented in LS-Opt are
described below.

o Tournament selection. In tournament selection, ‘N’ (Niown 1S tournament size) individuals from
a population, selected at random, participate in a tournament. The individual with the largest fitness
is declared the winner. Mostly, practitioners use Ny, = 2. Increasing the tournament size Ny’
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increases selection pressure and might lose diversity in the population that is required to drive the
search.

o Roulette wheel or proportionate reproduction. In this selection approach, each individual is
assigned a probability of selection based on its fitness value. In a population of N,,, individuals, the
selection probability of the i" individual is

anp

where F; is the fitness of i individual. High fitness individuals have a high probability of getting
selected. This scheme is implemented by considering a roulette wheel with circumference marked by the
fitness of each individual. One individual per spin of the wheel is selected. Then, the expected number
of copies of the i" individual in the mating pool can be estimated as

Npap
N, =F,./F;F=LZF,. (4-20)
pop J=1

This selection operator has a higher selection pressure compared to the tournament selection and can
lead to a premature convergence to local optima.

o Stochastic universal sampling. The roulette wheel selection operator is often noisy because of
multiple spins that correspond to round-off errors in computer simulations. To reduce this noise, it
was suggested to use a single spin of the wheel with N,,, equi-spaced pointers. This operator also
has a high selection pressure.

Crossover

Crossover is the main exploration operator of genetic search. In this operator, ¢ randomly selected
parents mate with a probability (P,: crossover probability) to create A children. These children share the
attributes from all parents such that they may be better or worse individuals. There are two prominent
strategies to create children: 1) (u+A) strategy selects best individuals from parents and children, and ii)
(u,A) strategy replaces parents with children irrespective of their fitness values. LS-OPT has adopted a
(2, 2) strategy for crossover such that two parents create two children and children replace parents in the
new generation. If parents do not create children, they are passed to the next generation.

There are many crossover operators in literature. A few popular crossover operators that have been
shown to perform reasonably well are available in LS-OPT. A brief description of these operators is as
follows:

o Single point binary crossover
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This crossover operator is used for binary encoding of the individuals. Two parents and a mating site are
randomly selected. All genes right to the mating sites are swapped between two parents.

o Uniform binary crossover

This crossover operator is also used for binary encoded individuals. For a randomly selected parent pair,
genes are swapped based on a flip of a coin for each gene in the chromosome.

o Simulated binary real crossover (SBX)

This crossover operator, introduced by Deb and Agrawal in 1995 [12], is used with real encoding i.e.,
real variables are used as genes. This crossover emulates the single point binary crossover by assigning a
probability distribution to each parent. Two children are created from two parents using that probability
distribution such that the mean of parents and children are the same. The probability distribution is
controlled by a distribution index #,. such that large value of 7. creates children near parents and small
value of 7, creates children far from parents. Deb and Beyer [13] showed that SBX possesses self-
adaptation capabilities.

o Blend real crossover (BLX-a)

This crossover operator was introduced by Eshelman and Schaffer in 1993 [14]. In this crossover, a
child x is created from two parents x" and x® (x® > xV) by randomly selecting a value from the
interval [x'" — a(x'¥ — xV), x? + a(x® — x)]. Typically, a is taken as 0.5.

Mutation

Mutation is carried out with a mutation probability (P,,) to bring random changes in the individuals. This
operator is very useful when population has lost diversity and the search has become stagnant. Then
mutation can help improve diversity in the solutions. The mutation operators for binary and real
encoding are given as follows:

o Simple binary mutation

In simple binary mutation of an individual, a bitwise mutation is carried out by changing a ‘0’ to ‘1’ or
vice-versa with a small mutation probability P,. Typically P, is taken as the inverse of chromosome
length such that on an average, one gene (bit) per chromosome is changed.

o Real mutation

As was used for the SBX operator, a distribution (defined by mutation distribution index) around each
variable is specified and a random variable is selected from that distribution. Large values of the
distribution index are recommended to create a child near the parent.
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A complete cycle of selection, crossover, and mutation would result in a child population. The population
size is kept constant for both parent and child populations.

Elitism in simple genetic algorithm

Due to the disruptive nature of exploration operators, high fitness individuals may get lost while creating
a child population from the parent population. Sometimes, it is advantageous to keep these high fitness
individuals to preserve favorable genetic information (schema). This process of artificially saving the
best individuals is called elitism. To implement this process, the parent and child populations are ranked
separately. The worst individuals in the child population are replaced by the best individuals from the
parent population. The number of elites should be carefully chosen because a large number of elite
solutions may drive the search to local optima by reducing the diversity in the population. On the other
hand, too few elites may slow the convergence because favorable schema would spread at a slow rate.

After applying elitism, the child population is transferred to the parent population. The best individual
found in the search process is preserved at each generation.

Stopping criterion

Many criteria have been specified in literature to terminate the GA search process. Some researchers
have suggested stopping the search when there is no improvement in the last few generations. However,
the most common stopping criterion is the fixed number of generations or function evaluations. A user-
defined number of generations is used as the stopping criterion in LS-OPT.

At the end of simple genetic algorithm, the best individual (among all searched individuals) is reported as
the optimal solution. If enough processing capabilities are carried out, the reported best individual would
represent the global optimal solution.

4.9. Multi-objective optimization using genetic algorithms

Multi-objective optimization problems are significantly different than the single-objective optimization
problems. MOO problems do not have a single optimal solution. Instead there is a set of solutions that
reflects trade-offs among objectives. For MOO problems, population based methods like genetic algorithms
are very attractive because many trade-off solutions can be found in a single simulation run. While it is easy
to compare multiple designs for a single-objective optimization problem, special considerations are required
to compare different designs. Goldberg [11] proposed a non-domination concept to compare different
individuals. This idea forms the backbone of most MOGAs and is defined next.

4.9.1. Non-domination criterion
A non-domination criterion is used to identify better individuals without introducing any bias towards any

objective ([17]-[19]). To understand the non-domination criterion, a domination criterion is defined as
follows.
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A solution x'V dominates another solution x? (x = x®), if either of the following three conditions is
true.

1. xis feasible and x'? is infeasible.

2. Both x" and x® are infeasible but x'?' is more infeasible compared to x.

3. When both x" and x® are feasible, x" dominates x? (x" = x?) if following two conditions are
satisfied

o x"is no worse than x*® in “all’ objectives, i.e. (f; (x") 2 /; x?)) je[l,2,.,M].
o x"is strictly better than x® in “at least one’ objective, i.e., (f,(x") < f,(x?)), A j €[1,2,.... M].

If neither of the two solutions dominates the other, both solutions are non-dominated with respect to each
other. An individual s is considered non-dominated with respect to a set of solutions S, if no solution in S
dominates s.

4.9.2. Pareto optimal solutions

Any non-dominated solution in the entire design domain is a Pareto optimal solution. By definition, all
Pareto optimal solutions are non-dominated solutions but vice-versa is not true.

Like single objective optimization problems, there are local and global Pareto optimal solutions. A non-
dominated solution is a local Pareto optimal solution with respect to the considered non-dominated solution
set, whereas a global Pareto optimal solution is non-dominated with respect to all solutions in the design
domain.

4.9.3. Pareto optimal set

The set of all Pareto optimal solutions is the Pareto optimal set for the given problem.

4.9.4. Pareto optimal front

Function space representation of the Pareto optimal set is Pareto optimal front. When there are two
conflicting objectives, the POF is a curve, when there are three objectives, POF is a surface, and for higher
dimensions, POF is a hyper-surface.

4.9.5. Ranking

Most MOGA search methods assign rank to different individuals based on non-domination criterion. This
ranking is used to govern the search process. A rank of one is considered the best rank and low fitness
individuals are assigned low ranks (large values of rank are low). Different individuals in a population are
assigned rank as follows:

1. Initialize rnk = 1. Define a set of individuals S, same as the population.
2. Run a non-domination check on all individuals in S.

3. All non-dominated individuals are assigned rank = rnk.
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4. rnk=rnk+ 1.
5. Remove all non-dominated individuals from S.
6. If S# @, repeat Step 2, else stop.

Note that many individuals can have the same rank.

Different concepts discussed here are illustrated using a two-objective unconstrained minimization problem
in Figure 4-4. Each dot represents a solution in the design space that is shown as the shaded area. For each
diamond, there is at least one triangle that is better than the diamond in at least one objective without being
inferior in other objective. So all individuals represented by diamonds are dominated by the individuals
represented by triangles. Similarly, all triangles are dominated by squares and squares are dominated by
circular dots. No solution represented by triangles can be said better than any other solution represented by
triangles. Thus, they are non-dominated with respect to each other. All individuals represented by circles are
non-dominated with respect to any other individual hence they have a rank of one (best rank). If all points
represented by circles are removed, the individuals represented by squares are non-dominated with respect
to all remaining solutions such that they are assigned a rank of two, and so on. Note that all individuals with
the same shape of dots have the same rank. For this example, all individuals with rank one (circular dots)
also represent the true Pareto optimal solutions set. The line on the boundary shows the Pareto optimal front.

f,

r 3

Figure 4-4: lllustration of non-domination criterion, Pareto optimal set, and Pareto optimal front.
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4.9.6. Convergence vs. diversity

Different multi-objective optimization algorithms are compared using two criteria. First, convergence to the
global Pareto optimal front, and second, diversity on the Pareto optimal front. The convergence criterion
requires identifying the global Pareto optimal solution set.

A good multi-objective optimizer is required to maintain diversity (representation of different regions of the
Pareto optimal front). This is an important criterion since our goal is to find different trade-off solutions. It
is important to note that diversity on the Pareto optimal front (function space) does not mean the diversity in
the variable space, i.e., small changes in variables can result in large changes in the function values.

4.9.7. Elitist non-dominated sorting genetic algorithm (NSGA-II)

This algorithm was developed by Prof. Kalyanmoy Deb and his students in 2000 [20]. This algorithm first
tries to converge to the Pareto optimal front and then it spreads solutions to get diversity on the Pareto
optimal front. Since this algorithm uses a finite population size, there may be a problem of Pareto drift. To
avoid that problem, Goel et al. [21] proposed maintaining an external archive.
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Figure 4-5: Elitist non-dominated sorting genetic algorithm (NSGA-II). The shaded blocks are not the
part of original NSGA-II but additions to avoid Pareto drift.

The implementation of this archived NSGA-II is shown in Figure 4-5, and described as follows:
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1. Randomly initialize the parent population (size N,,,). Initialize an empty archive.
2. Evaluate the population i.e., compute constraints and objectives for each individual.

3. Rank the population using non-domination criteria. Also compute the crowding distance (this
distance finds the relative closeness of a solution to other solutions in the function space and is used
to differentiate between the solutions on same rank).

Employ genetic operators — selection, crossover & mutation — to create a child population.
Evaluate the child population.

Combine the parent and child populations, rank them, and compute the crowding distance.

N bk

Apply elitism (defined in a following section): Select best N,,, individuals from the combined
population. These individuals constitute the parent population in the next generation.

>

Add all rank = 1 solutions to the archive.

9. Update the archive by removing all dominated and duplicate solutions.

10. If the termination criterion is not met, go to step 4. Otherwise, report the candidate Pareto optimal set
in the archive.

4.9.8. Elitism in NSGA-II

/‘
Rank 1
< Rank 1 Rank 1
= 8 < Rank 2
O a Rank 3 Combined
g population | Rank2 - Rank 2
L Rank 4 Rank 3
B ﬁ Rank 3
c Rank 1 Elitist selection
= O
E I Rank 2 Rank 4 New parent
[= B
Rank 4 Rank 6

Figure 4-6: Elitism in NSGA-I1.

Elitism is applied to preserve the best individuals. The mechanism used by NSGA-II algorithm for elitism is
illustrated in Figure 4-6. After combining the child and parent populations, there are 2N,,, individuals. This
combined pool of members is ranked using non-domination criterion such that there are n; individuals with
rank i. The crowding distance of individuals with the same rank is computed. Steps in selecting N,
individuals are as follows:
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1. Seti=1, and number of empty slots Ny = Nyop.

2. If n; < Nitoss,

o Copy all individuals with rank ‘i’ to the new parent population.

o Reduce the number of empty slots by #;: Nyjors = Nsiors — i

o Increment ‘i’: i=i+1.

o Return to Step 2.

3. If n; > Nyos,0.

o Sort the individuals with rank ‘i’ in decreasing order of crowding distance.
o Select Ny, individuals.

o Stop

4.9.9. Diversity preservation mechanism in NSGA-II — crowding distance calculation

To preserve diversity on the Pareto optimal front, NSGA-II uses a crowding distance operator. The
individuals with same rank are sorted in ascending order of function values. The crowding distance is the
sum of distances between immediate neighbors, such that in Figure 4-4, the crowding distance of selected
individual is ‘a + b’. The individuals with only one neighbor are assigned a very high crowding distance.

Note: It is important to scale all functions such that they are of the same order of magnitude otherwise the
diversity preserving mechanism would not work properly.

4.10. Adaptive simulated annealing (ASA)

The Simulated Annealing (SA) is a global stochastic optimization algorithm that mimics the metallurgical
annealing process. The original simulated annealing algorithm was developed as a generalization of the
Metropolis Monte Carlo integration algorithm [22] to solve various combinatorial problems by Kirkpatrick
et al. [23]. The term 'simulated annealing' derives from the rough analogy of the way that the liquefied
metals at a high temperature crystallize on freezing. At high temperatures, the atoms in the liquid are at a
high energy state and move freely. When the liquid is cooled, the energy of the molecules gradually reduces
as they go through many lower energy states, and consequently their motion. If the liquid metal is cooled
too quickly or 'quenched’, the atoms do not get sufficient time to reach thermal equilibrium at a temperature
and might result in a polycrystalline structure with higher energy. This atomic structure of material is not
necessarily the most desired. However, if the rate of cooling is sufficiently slow, the atoms are often able to
achieve the state of minimum (most stable) energy at each temperature state, resulting in a pure crystalline
form. This process is termed as ‘annealing’. Kirkpatrick et al. [23] employed this annealing analogy to
develop an efficient search algorithm. Pincus [24], and Cerny [25] also are also independently credited with
the development of modern simulated annealing algorithm.
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In simulated annealing parlance, the objective function of the optimization algorithm is often called ‘energy’
E and is assumed to be related to the state, popularly known as temperature 7, by a probability distribution.
The Boltzmann distribution is the most commonly used probability distribution:

Probability (E) ~ exp(-E / xgT ),
where kg 1s the Boltzmann's constant.

4.10.1. Algorithm

The search initializes with the temperature being high and cooling slowly such that the system goes through
different energy states in search of the lowest energy state that is the global minima of the optimization
problem. A stepwise description of the simulated annealing algorithm is as follows:

Step 1: Initialization
The search starts by identifying the starting state X € X and corresponding energy E” = E(x). The

temperature 7 is initialized at a high value: 9=r max- A cooling schedule, acceptance function, and
stopping criterion are defined. This is iteration & = 0. X = {x*}.

Step 2: Sampling

A new point x'e X is sampled using the candidate distribution D(X(k) ), and set XED = x0 y {x'}, and
corresponding energy is calculated E' = E(x").

Step 3: Check acceptance

Sample a uniform random number {'in [0, 1] and set

x* = xif (< AEED,TO) or

XD = X otherwise.

where A(x) is the acceptance function that determines if the new state is accepted.

Step 4: Temperature update

Apply the cooling schedule to the temperature: 7V = c( X*™V, 7).

Step 5: Convergence check

Stop the search if the stopping criterion is met, else set k = k+1 and go to Step 2.
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As is obvious, the efficiency of the simulated annealing algorithm depends on appropriate choices of the
mechanism to generate new candidate states D, cooling schedule C, acceptance criterion A4, and stopping
criterion. While many options have been proposed in literature, the very fast simulated reannealing
methodology proposed by Ingber (1989) [27] has been the most promising. This algorithm is also known as
adaptive simulated annealing (ASA) [28]. The different selections along with a very brief historical
perspective are outlined as follows.

4.10.2. Acceptance function

Two most prominent acceptance functions used to accept a candidate point are the Metropolis criterion and
the Barker criterion.

Metropolis criterion : A(E',E,T)=min{l,exp(—(E —E)/T)}.
Barker criterion : A(E' E,T)=1/{1+exp((E —E)/T)}.

The theoretical motivation for such a restricted choice of acceptance functions can be found in [29]. It is
also shown that under appropriate assumptions, many acceptance functions, which share some properties,
are equivalent to the above two criteria. The Metropolis criterion is the most commonly used selection
criterion and this is chosen as the acceptance function in LS-OPT.

4.10.3. Sampling algorithm

The choice of the next candidate distribution and the cooling schedule for the temperature are typically the
most important (and strongly interrelated) issues in the definition of a SA algorithm. The next candidate
state, x', is usually selected randomly among all the neighbors of the current solution, x, with the same
probability for all neighbors. The choice of the size of the neighborhood typically follows the idea that when
the current function value is far from the global minimum, the algorithm should have more freedom, i.e.,
larger 'step sizes' are allowed. However, Ingber [27] suggested using a more complicated, non-uniformly
selection procedure outlined below to allow much faster cooling rates.

Let i design variable be bounded as, x; € [4;, B;]. Then the new sample is given by
x, =x" +v (B, - 4,),

1

where v, is estimated as follows.

v, = sgn(u - 0.5)TH A +1/T ) —1} u cUl0,1].
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The most important distinction in ASA with standard SA is the use of an independent temperature schedule
(Tp,)) for each parameter along with the temperature associated with the energy function. The cooling
schedule for the parameter temperature, used to generate N dimensional design vector, is

(k) _ 7(0) 1/N
T, =T,, exp(—c;k' ™).
c; =m,exp(-n;/N).

The control parameter ¢; depends on two free parameters m; and n;, defined as

anneal ) .

m, =log(T,"" /T\)),n; =log(N.

The ratio T p‘f‘l.in /T ;f’i) is the parameter temperature ratio and the parameter N, 1 linked to the time allowed

(number of steps) at each parameter temperature state. Ingber [30] found that the search procedure is
sensitive to the choice of the two parameters and should be selected carefully. Relatively, the parameter
temperature ratio is the more important of the two parameters.

4.10.4. Cooling schedule

The basic idea of the cooling schedule is to start the algorithm off at high temperature and then gradually
drop the temperature to zero. The primary goal is to quickly reach the so called effective temperature,
roughly defined as the temperature at which low function values are preferred but it is still possible to
explore different states of the optimized system, [31]. After that the simulated annealing algorithm lowers
the temperature by slow stages until the system 'freezes' and no further changes occur. Geman and Geman
[32] found the lower bound on the cooling schedule to be 1/log(t) where ‘t’ is an artificial time measure of
the annealing schedule. Hence,

T =T /log(k).

This strategy is also known as Boltzmann annealing (Szu and Hartley) [33]. Later van Laarhoven and Aarts
[34] modified this strategy to enable a much faster cooling schedule of

T =1 /k.

A straightforward and most popular strategy is to decrement 7 by a constant factor every vr iterations:
T=T/u,

where ur is slightly greater than 1 (e.g. xr = 1.001). The value of vr should be large enough, so that 'thermal

equilibrium’ is achieved before reducing the temperature. A rule of thumb is to take vy proportional to the
size of neighborhood of the current solution.

Nevertheless, the fastest cooling rate was made possible by using Ingber's algorithm that allowed an
exponentially faster cooling rate of
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T® =T exp(—ck"™)
c=mexp(—n/N). .

As was described in the previous section, the cooling rate is governed by the two free parameters that are
linked to the temperature ratio and annealing scale,
m=1log(T™ /T”), n=1og(N,,...)-

Typically the temperature ratio used to drive the energy (objective) function is linked to the parameter
temperature ratio called here as ‘cost-parameter annealing ratio’.

4.10.5. Stopping criterion

Selection of an appropriate stopping criterion is one of the most difficult tasks in stochastic optimization
algorithms because it is unknown a priori if the algorithm has reached the global optima or is stuck in a hard
local optimum. Thus the stopping rules proposed in the literature about SA, all have a heuristic nature and
are, in fact, more problem dependent than algorithm dependent. Some common ideas in the heuristics are 1)
stop when it does not make a noticeable progress over a number of iterations, ii) stop when the number of
function evaluations is reached, and iii) stop when the temperature has fallen substantially to a desired
minimum level 7,,;,. The last two criteria are used to terminate the adaptive simulated annealing search in
LS-OPT.

4.10.6. Re-annealing

For multi-dimensional problems, most often the objective function has variable sensitivities for different
parameters and at different sampling states. Hence, it is worth while to adjust the cooling rates for different
parameters. Ingber [27] used a reannealing algorithm to periodically update the annealing time associated
with parameters and the energy function such that the search is more focused in the regions with potential of
improvements. For this, he suggested computing the sensitivities of the energy function as,

s; =OFE/ ox,.
All the annealing time parameters k are updated by the largest sensitivity s,qx as follows:

T(k) = T(k) (smax /Si)’

pii Dl

k; = (log(T,? /T;ﬁ)))N.

The new annealing time associated with the i" parameter is k; = k,. Similarly the temperature parameter

associated with the energy function is scaled. One can easily deduce from the above formulation that
reannealing stretches the ranges of the insensitive parameters relative to the sensitive parameters. More
details of reannealing can be obtained elsewhere [30].
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Some comments

1.

It is difficult to find the initial temperature directly, because this value depends on the neighborhood
structure, the scale of the objective function, the initial solution, etc. In [23] a suitable initial
temperature is one that results in an average uphill move acceptance probability of about 0.8. This
T can be estimated by conducting an initial search, in which all uphill moves are accepted and
calculating the average objective increase observed. In some other papers, it is suggested that
parameter 7' is set to a value, which is larger than the expected value of |E'-E] that is encountered
from move to move. In [31] it is suggested to spend most of the computational time in short sample
runs with different 7¥) in order to detect the effective temperature. In practice, the optimal control of
T may require physical insight and trial-and-error experiments. According to [35], "choosing an
annealing schedule for practical purposes is still something of a black art".

Simulated annealing has proved surprisingly effective for a wide variety of hard optimization
problems in science and engineering. Many of the applications in our list of references attest to the
power of the method. This is not to imply that a serious implementation of simulated annealing to a
difficult real world problem will be easy. In the real-life conditions, the energy trajectory, i.e. the
sequence of energies following each move accepted, and the energy landscape itself can be highly
complex. Note that state space, which consists of wide areas with no energy change, and a few
"deep, narrow valleys", or even worse, "golf-holes", is not suited for simulated annealing, because in
a "long, narrow valley" almost all random steps are uphill. Choosing a proper stepping scheme is
crucial for SA in these situations. However, experience has shown that simulated annealing
algorithms are more likely trapped in the /argest basin, which is also often the basin of attraction of
the global minimum or of the deep local minimum. Anyway, the possibility, which can always be
employed with simulated annealing, is to adopt a multi-start strategy, i.e. to perform many different
runs of the SA algorithm with different starting points.

Another potential drawback of using SA for hard optimization problems is that finding a good
solution can often take an unacceptably long time. While SA algorithms may quickly detect the
region of the global optimum, they often require a few iterations to improve its accuracy. For small
and moderate optimization problems, one may be able to construct effective procedures that provide
similar results much more quickly, especially in cases when most of the computing time is spent on
calculations of values of the objective function. However, it should be noted that for large-scale
multidimensional problems an algorithm which always (or often) obtains a solution near the global
optimum is valuable, since various local deterministic optimization methods allow quick refinement
of a nearly correct solution.

In summary, simulated annealing is a powerful method for global optimization in challenging real world
problems. Certainly, some "trial and error" experimentation is required for an effective implementation of
the algorithm. The energy (cost) function should employ some heuristic related to the problem at hand,
clearly reflecting how 'good' or 'bad' a given solution is. Random perturbations of the system state and
corresponding cost change calculations should be simple enough, so that the SA algorithm can perform its
iterations efficiently. The scalar parameters of the simulated annealing algorithm have to be chosen
carefully. If the parameters are chosen such that the optimization evolves too fast, the solution converges
directly to some, possibly good, solution depending on the initial state of the problem.
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4.11. Hybrid algorithms

As discussed earlier, the stochastic algorithms like the genetic algorithm (GA) and adaptive simulated
annealing (ASA) are designed to find the global optimal solution. However, one of the most difficult aspects
of using stochastic algorithms is to identify the correct stopping criterion. A defensive, but likely expensive,
approach is to run an algorithm sufficiently long to ensure the global optimal solution. However, the speed
of finding the global optimum can be significantly increased by combining the global optimizers with local
gradient based optimization methods. This combination, referred to as a hybrid algorithm, is based on a very
simple idea that the global optimizers reach the basin of the global optimum quickly i.e., they find very high
quality solutions, but significant effort is then required to achieve small improvements for refining the
solution. On the other hand, gradient based optimization methods like LFOPC can find an optimal solution
very quickly when starting from a good solution. Thus, in LS-OPT, a global optimizer such as the GA or
ASA is used to find a good starting solution followed by a single LFOPC run to converge to the global
optimum. This approach has been found to be both effective and efficient for global optimization. The
hybrid algorithms are available for both the GA and ASA options.

4.12. Visualization of the Pareto optimal frontier

Due to the complexity of visualizing the Pareto Optimal Frontier (POF) for high dimensional problems,
methods to improve exploration of the Pareto set have been devised. Several methods have been
implemented in LS-OPT. These methods are described below:

4.12.1. Trade-off plot

This is the simplest of all plot types. The user creates a scatter plot of different entities, mostly objective
functions, in a 3-D space. One can also add fourth entity in the form of the color. An example of the Trade-
Off plot in four-dimensional space is shown in Figure 4-7. A serious limitation of this plot type is its
inability to simultaneously show more than four dimensions.
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Figure 4-7: Trade-off plot shows all four objectives of Pareto optimal solutions.

4.12.2. Hyper-radial visualization (HRYV)

HRV [38] is based on the minimization of the sum of squares of the normalized objective functions which
allows the POF to be displayed in two dimensions. HRV is effectively a 2-dimensional mapping of the n-
dimensional objective function space.

The mathematical form of the multi-objective optimization problem is as follows:

Minimize F(x) = [ f,(x), f,(X),..., f, (x)] where x =[x, x,,..., X ]

subject to
g;(x)<0; j=12,...m inequality constraints
h(x)<0; k=12,..,1 equality constraints
x <x, <x'; i=12,.,p side constraints

HRV can be seen as a conversion of the multi-objective optimization problem to a single objective
optimization problem using the objective:
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subject to

N

W.=1and W, >0

i=

where s = n/2 and the two additive components represent the objectives assigned to the two axes of the plot
(see Figure 4-8). The case where 7 is an odd number is discussed below.

A
Pareto Frontier of
, frontier Pareto
o2 frontier
igin of the plot
Indifference
curves
0 | -
’ Axis 1

Figure 4-8: The Pareto frontier and indifference curves

The HRV method assumes that the set of Pareto points has already been computed and are available for
display. First each objective function F; is normalized to the range of the Pareto points. Normalization is

done by using the lower and upper values of all the computed Pareto points to define the range for each
objective.

l

F-F o
' :F'I—Imm i:l,...,n WhereE E[0:1]

i max i min
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F.

The coordinate [F; 5 minoeees oy min
representing the minima of ind1v1dual objectives. In the HRV representation, this point becomes the origin
of the 2-dimensional plot. In addition to normalizing each objective function, the result of the Hyper-Radial

Calculation (HRC) must also be normalized:

] represents the Utopian point (see Figure 4-8), i.e. the point

min ?

where HRC €[0,1]

Now consider the n-objective sample data, corresponding to Pareto point j (of a total of ¢ Pareto points).
The objective functions are grouped into 2 sets controlled by the designer and an HRC value is computed
for each group resulting in the coordinates HRC1 and HRC2. Thus s objectives are represented by HRC1
while n-s objectives are represented by HRC2. The two groups are therefore

Group 1: [F,F, L FL. B

Group 2: [F.,F.,,F

s+197 54297 5430°

7F]

The formulation is unbiased because the objectives can be grouped in an arbitrary way without sacrificing
the unbiased visualization property. This means the radius originating in the Utopian point of any point is
preserved irrespective of the objective grouping. The 'best' design is therefore considered to be the one
closest to the Utopian point, i.e., the one with the smallest radius in the 2-dimensional plot.

The distance from the Utopian point is not the only criterion of how good a design is since a designer may
also have a preference regarding the objectives. Preferences are incorporated by adding weights to the
objectives represented in the HRC functions:

Group 1: (£, F,, F,.. F] HRCW1 =

Group 2: (F s Fysen F HRCW?2 = Zi:m /

s+197 54297 5439

When (n-s < s) as is the case when, for instance, n is an odd number, (2s-7) dummy objective functions are
added to normalize the visualization. This is to avoid producing an elliptical set of indifference curves. A
dummy objective is a g-dimensional null vector, ¢ being the number of Pareto points. The addition of such a
dummy objective ensures the preservation of the indifference radius, so if the groupings are reselected, a
particular Pareto point will move tangent to its current radius and therefore maintain its level of
indifference.
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4.12.3. Parallel co-ordinate plot (PCP)

The parallel coordinate plot shows all entities of a design by a line such that any number of entities can be
simultaneously shown. An example of PCP is shown in Figure 4-9. The user can move the sliders on each
entity to filter-out the undesired values and screen the objectives. The screened out solutions are shown as
the grey-lines in Figure 4-9.

Figure 4-9: Parallel coordinate plot shows objectives and design variables of all points on the Pareto
front.

4.12.4. Self organizing maps (SOM)

Self organizing map [39], proposed by Kohonen in early 1980s, is a very powerful technique to represent n-
dimensional data in two-dimensional space. The designs that are close in the n-dimensional space remain
close to each other in the mapped space as well. These maps allow the user to explore the solution space in
many dimensions simultaneously. Figure 4-10 shows an example of a self organizing map. One can
simultaneously see design objectives, variables, and constraints.

By default, the network is trained with 12 rows and 9 columns i.e., 108 nodes but the number of units can be
controlled in the viewer GUI. With a trained SOM, one can show the following:

1. Component maps: Each component map shows one entity e.g., variables, responses, etc. One can
simultaneously plot different component maps to see the variation in data in different regions.

2. D-matrix: This map shows the average distance from the neighboring units in the maps. This feature
helps identify sparse sections in the data.

3. U-matrix: The U-matrix map shows the actual distances between the two neighboring units.
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4. C-matrix: This plot illustrates the density associated with each SOM unit. For a well trained
network, the C-matrix plot would also identify sparsely distributed data.

Figure 4-10: Self organizing maps display design objectives, variables, and constraints on the Pareto
front.

4.13. Performance metrics for multi-objective optimization

Since multi-objective optimization results in a set of solutions, it requires special metrics to assess the
convergence to the Pareto optimal front, diversity on the front, and the spread of the front. While the users
can get detailed information on performance metrics for multiobjective optimization problems elsewhere
[17], a few metrics available in LSOPT are described here.

4.13.1. Number of nondominated points

This is the number of solutions in the archive of all nondominated solutions at any generation. Usually a
higher number of nondominated points are achieved when convergence is good.
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4.13.2. Spread

The spread of the front is calculated as the diagonal of the largest hypercube in the function space that
encompassed all points. A large spread is desired to find diverse trade-off solutions. The spread measure is
derived using the extreme solutions making it susceptible to the presence of a few isolated points that could
artificially improve the spread metric. An equivalent criterion might be the volume of such a hypercube.

4.13.3. Standard deviation of crowding distance

This complimentary criterion (to the spread metric) detects the presence of poorly distributed solutions by
estimating how uniformly the points are distributed in the Pareto optimal set. This metric is defined as,

‘d—cﬂ _

' d = d..

1

M=

N
5:2
i=1

1
N

where d; is the crowding distance of the solution in the function or variable space. The boundary points are
assigned a crowding distance of twice the distance to the nearest neighbor. A small value of the uniformity
measure is desired to achieve a good distribution of points.

4.13.4. Min/Max of objectives

This represents the range of individual objectives. A wide range represents more choices for the designer.
4.13.5. Hypervolume

A dominated hypervolume metric tries to simultaneously estimate the convergence and spread

characteristics by computing the union of the volume between the optimal solutions and a reference point.
For practical purposes, the nadir point of all solutions is used as the reference point.

While all the above metrics are obtained on a single set of solutions, the following performance metrics are
obtained by comparing multiple sets of solutions. These metrics are helpful in determining the convergence.
In LSOPT, the set of non-dominated solutions separated by A generations (archive 4; and 4,.4) are compared
and the following metrics are reported. A is called generation interval.

4.13.6. Number of common points

This is the number of solutions that exist in both sets 4; and 4, 4. A large number of common points is
indicative of the high quality of solutions. The set of common solutions is represented as,

0= {ai ‘4 A =4 }’ai—A €d_,.a,€4,.

and n(Q) is the size of set Q. This is a particularly good metrics when a large generation interval is used.
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4.13.7. Number of new nondominated solutions

This metrics denotes the number of nondominated solutions that were evolved during the current generation
interval. The set of such solutions is represented as,

0= {ai NN }’ai—A €4, ,,a, €4,

A large number of new solutions relative to the total archive size indicates that the new solutions are still
being evolved and hence convergence is not yet achieved.

4.13.8. Number of old dominated solutions n(Q)

This metrics denotes the number of nondominated solutions in the older archive 4, 4 that were dominated by
the solutions in the current archive A4;. The set of dominated solutions is,

0= {ai—A 14, = aq, }= a, s € Ai—A’ai € Ai'
A large number of dominated solutions represents significant evolution.

4.13.9. Consolidation ratio

This represents the fraction of archive 4; that has evolved up to the i-A™ generation. This is computed as the
ratio of the number of members in archive 4, that are also present in the archive A; (non-dominated
solutions) to the size of archive 4;. Mathematically,

n(s)

CR = n(Ai)’S = {ai—A 1a;_, %ai},aiﬂ EAi—Aaa,' EAi'

This metric represents the proportion of potentially converged solutions in the archive. In the early phase of
a MOEA simulation, a large fraction of the non-dominated solutions in the archive 4,4 would be dominated
by the solutions in archive 4; due to evolution, thus resulting in a small fraction of surviving solutions i.e.,
small value of the consolidation ratio. However, significantly better solutions evolve in the later phases such
that a large proportion of solutions in the archive 4; 4 remain non-dominated with respect to new solutions
leading to a high consolidation ratio. In the limiting case, the consolidation ratio approaches one.

4.13.10. Improvement ratio

This represents the fraction of archive 4;4 dominated by the new solutions in archive 4;. This is computed
as the ratio of the number of members in archive 4;, that are dominated by the solutions in archive 4;
(dominated solutions) to the size of archive 4;. Mathematically,

nQ) .

R = n(A[),Q:{a,-A ta, , <aha, €4, ,,a, €A,

The archive A; includes all non-dominated members of archive 4,4, so no member of the archive 4; is
dominated. The improvement ratio quantifies the extent of improvement in the quality of evolved solutions.
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This metric has a high value in the early phase of simulation which gradually converges to zero when
convergence is achieved.

More information about these performance metrics can be obtained from [40].

4.14. Discrete optimization

4.14.1. Discrete variables

Discrete variables can have only distinct values; for example, the variable can be a plate thickness having
allowable values 1.0, 2.0, 2.5, and 4.5.

4.14.2. Discrete optimization

A very basic method of discrete optimization would be simply evaluating all possible design and selecting
the best one. This is not feasible for the general case; consider for example that 30 design variables with
variables having 5 possible values of the design variable will result in 10*' different designs. Evaluating all
the possible designs is therefore not computationally feasible. Note that 30 design variables describe a
design space with 10° quadrants, so finding the quadrant containing the optimum design is a hard problem.
The quadrant containing the optimal design can be found using a gradient based search direction, but
discrete optimization problems are not convex, which means that gradient based search directions may lead
to local optima. The LS-OPT discrete optimization methodology using LFOPC therefore use gradient based
search in conjunction with random search methods. The optimal design found in this manner, cannot be
shown to be uniquely the global optimum, but is considered the (practical) optimum because it is known that
it is highly unlikely that a better design will be found.

The cost of the discrete optimization is kept affordable by doing the optimization using the values from a
response surface approximation. The accuracy of the response surface or metamodel is improved using a
sequential strategy described in a later section.

4.14.3. Mixed-discrete optimization

The discrete variables can be used together with continuous variables. This is called mixed-discrete
optimization.

The steps followed to compute the mixed-discrete optimum are:

1. Consider all the discrete variables to be continuous and optimize using the gradient based design
optimization package. This continuous optimum found is used as the starting design in the next
phase.

2. Discrete optimization is done considering only the discrete variables with the continuous variables
frozen at the values found in the previous phase.

3. Continuous optimization is done considering only the continuous variables and with the discrete
variables frozen at the values found in the previous phase.
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4.14.4. Discrete optimization algorithm: genetic algorithm

A GA (genetic algorithm, Section 4.8) is used to do the discrete optimization. A GA mimics the
evolutionary process selecting genetic strings. In a GA, the design variable values are coded up into data
structure similar to genetic strings. New generations of designs are obtained by combining portions of the
genetic strings of the previous generation of designs. Designs that have relatively better values of the
objective function have a better chance to contribute a portion of its genetic string to the next generation.

4.14.5. Objective function for discrete optimization

The discrete optimization algorithm used can only consider an objective function (no constraints); the
constraints specified by the user are therefore incorporated into this objective function. The resulting
objective function has two different behaviors:

1. A feasible design exists. In this case all infeasible designs (those violating the constraints) are simply
rejected, and only feasible designs are considered inside the optimization algorithm. The objective
function used is simply that specified by the user.

2. A feasible design does not exist. If the search for the best feasible designs fails due to a lack of
feasible designs, then a search is done for the least infeasible constraint. The objective function is a
aint, — Boundi|

with the summation done over all
|B0und i|

) o |constr
scaled sum of the constraint violations: z

the violated constraints.

4.14.6. Sequential strategy

The discrete and the mixed-discrete optimization are done using the response values from the response
surfaces or metamodels. The accuracy of the response surface or metamodels is therefore very important.
The accuracy of the metamodels is improved by a sequential response surface method (SRSM) (see Section
4.6), in which the size of the subregion over which the designs are evaluated are reduced until convergence.
Reducing the size of the subregion is the best known method of obtaining accuracy for optimizing using
metamodels.

Discrete optimization introduces the concern that a discrete variable value may not be on the edge of the
subregion selected by the SRSM algorithm. The SRSM algorithm was therefore modified to use closest
discrete values outside the subregion. This implies that the subregion cannot be smaller than the distance
between two successive discrete values.

4.15. Summary of the optimization process

The following tasks may be identified in the process of an optimization cycle using response surfaces.

Table 4-1: Summary of optimization process

| Item | Input | Output |
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points. Analysis programs to be
scheduled.

Item Input Output
DOE Location and size of the subregion | Location of the experimental
in the design space. The points.
experimental design desired. An
approximation order. An
affordable number of points.
Simulation Location of the experimental Responses at the experimental

points.

Build response surface

Location of the experimental
points. Responses at the
experimental points. Function
types to be fitted.

The approximate functions
(response surfaces). The
goodness-of-fit of the
approximate functions at the
construction points.

(response surfaces). Bounds on
the responses and variables.

Check adequacy The approximate functions The goodness-of-fit of the
(response surfaces). The location | approximate functions at the
of the check points. The responses | check points.
at the check points.

Optimization The approximate functions The approximate optimal

design. The approximate
responses at the optimal design.
Pareto optimal curve data.

Two approaches may be taken:

4.15.1. Convergence to an optimal point

o First-order approximations.

Because of the absence of curvature, it is likely that perhaps 5 to 10 iterations may be required for
convergence. The first-order approximation method turns out to be robust thanks to the sequential
approximation scheme that addresses possible oscillatory behavior. Linear approximations may be rather
inaccurate to study trade-off, i.e., in general they make poor global approximations, but this is not
necessarily true and must be assessed using the error parameters.

o Second-order approximations.

Due to the consideration of curvature, a sequential quadratic response surface method is likely to be
more robust, but can be more expensive, depending on the number of design variables.

o Other approximations.

Neural networks (Section 3.1) and Radial Basis Function networks (Section 3.1.3) provide good
approximations when many design points are used. A suggested approach is to start the optimization
procedure in the full design space, with the number of points at least of the order of the minimum
required for a linear approximation. To converge to an optimum, use the iterative scheme with domain
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reduction as with any other approximations, but choose to update the experimental design and response
surfaces after each iteration (this is the default method for non-polynomial approximations). The
metamodel will be built using the total number of points.

See Section 4.5 on sequential strategies for optimization and design exploration.
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S. Applications of Optimization

5.1. Multicriteria design optimization

A typical design formulation is somewhat distinct from the standard formulation for mathematical
optimization (Eq. 2.3). Most design problems present multiple objectives, design targets and design
constraints. There are two ways of solving multicriteria design optimization problems.

The first method, discussed in Section 4.9, focused on finding multiple trade-offs, known as Pareto optimal
solutions, using multi-objective genetic algorithms. The advantage of this method is that one can find many
trade-off designs and the designer does not have to a priori determine the preference structures.

In the second method, the standard mathematical programming problem is defined in terms of a single
objective and multiple constraints. The standard formulation of Eq. (2.3) has been modified to represent the
more general approach as applied in LS-OPT.

Minimize the function
pUAx)] (5-1)
subject to the inequality constraint functions

L <g,(x)<U;; j=12,..m.

The preference function p can be formulated to incorporate target values of objectives.

Two methods for achieving this are given:

5.1.1. Euclidean distance function

Designs often contain objectives that are in conflict so that they cannot be achieved simultaneously. If one
objective is improved, the other deteriorates and vice versa. The preference function p[ f(x)] combines

various objectives f;. The Euclidean distance function allows the designer to find the design with the
smallest distance to a specified set of target responses or design variables:
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- JZ {f(X) F} 5

1

The symbols F; represent the target values of the responses. A value I'; is used to normalize each response i.
Weights W; are associated with each quantity and can be chosen by the designer to convey the relative
importance of each normalized response.

5.1.2. Maximum distance

Another approach to target responses is by using the maximum distance to a target value
Ji(x)-F,
P =max V- F : (5-3)
I
This form belongs to the same category of preference functions as the Euclidean distance function [1] and is

referred to as the Tchebysheff distance function. A general distance function for target values F; is defined
as

i=1

, |fl B ijr 1r
S R A aniin I (5-4)
Z( K]

with » =2 for the Euclidean metric and » — o for the min-max formulation (Tchebysheff metric).
The approach for dealing with the Tchebysheff formulation differs somewhat from the explicit formulation.

The alternative formulation becomes:
Minimize e (5-5)
subject to

(1 a]L)e<f() T +(1—ajL)e; i=l.,p, j=L..m

i 1 i

e>0.

In the above equation, I'; is a normalization factor, e represents the constraint violation or target discrepancy
and « represents the strictness factor. If & = 0, the constraint is slack (or soft) and will allow violation. If &
= 1, the constraint is strict (or hard) and will not allow violation of the constraint.

The effect of distinguishing between strict and soft constraints on the above problem is that the maximum
violation of the soft constraints is minimized. Because the user is seldom aware of the feasibility status of
the design problem at the start of the investigation, the solver will automatically solve the above problem
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first to find a feasible region. If the solution to e is zero (or within a small tolerance) the problem has a
feasible region and the solver will immediately continue to minimize the design objective using the feasible
point as a starting point.

A few points are notable:

1. The variable bounds of both the region of interest and the design space are always hard. This is
enforced to prevent extrapolation of the response surface and the occurrence of impossible designs.

2. Soft constraints will always be strictly satisfied if a feasible design is possible.
3. If a feasible design is not possible, the most feasible design will be computed.

4. If feasibility must be compromised (there is no feasible design), the solver will automatically use the
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, even
when allowing soft constraints, there is always a possibility that some hard constraints must still be
violated. In this case, the variable bounds could be violated, which is highly undesirable as the
solution will lie beyond the region of interest and perhaps beyond the design space. If the design is
reasonable, the optimizer remains robust and finds such a compromise solution without terminating
or resorting to any specialized procedure.

Soft and strict constraints can also be specified for search methods. If there are feasible designs with respect
to hard constraints, but none with respect to all the constraints, including soft constraints, the most feasible
design will be selected. If there are no feasible designs with respect to hard constraints, the problem is ‘hard-
infeasible’ and the optimization terminates with an error message.

In the following cases, the use of the Min-Max formulation can be considered:

1. Minimize the maximum of several responses, e.g. minimize the maximum knee force in a vehicle
occupant simulation problem. This is specified by setting both the knee force constraints to have
zero upper bounds. The violation then becomes the actual knee force.

2. Minimize the maximum design variable, e.g. minimize the maximum of several radii in a sheet metal
forming problem. The radii are all incorporated into composite functions, which in turn are
incorporated into constraints which have zero upper bounds.

3. Find the most feasible design. For cases in which a feasible design region does not exist, the user
may be content with allowing the violation of some of the constraints, but is still interested in
minimizing this violation.

5.2. Multidisciplinary design optimization

There is increasing interest in the coupling of other disciplines into the optimization process, especially for
complex engineering systems like aircraft and automobiles [2]. The aerospace industry was the first to
embrace multidisciplinary design optimization (MDO) [3], because of the complex integration of
aerodynamics, structures, control and propulsion during the development of air- and spacecraft. The
automobile industry has followed suit [4]. In [4], the roof crush performance of a vehicle is coupled to its
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Noise, Vibration and Harshness (NVH) characteristics (modal frequency, static bending and torsion
displacements) in a mass minimization study.

Different methods have been proposed when dealing with MDO. The conventional or standard approach is
to evaluate all disciplines simultaneously in one integrated objective and constraint set by applying an
optimizer to the multidisciplinary analysis (MDA), similar to that followed in single-discipline optimization.
The standard method has been called multidisciplinary feasible (MDF), as it maintains feasibility with
respect to the MDA, but as it does not imply feasibility with respect to the disciplinary constraints, is has
also been called fully integrated optimization (FIO). A number of MDO formulations are aimed at
decomposing the MDF problem. The choice of MDO formulation depends on the degree of coupling
between the different disciplines and the ratio of shared to total design variables [5]. It was decided to
implement the MDF formulation in this version of LS-OPT as it ensures correct coupling between
disciplines albeit at the cost of seamless integration being required between different disciplines that may
contain diverse simulation software and different design teams.

In LS-OPT, the user has the capability of assigning different variables, experimental designs and job
specification information to the different solvers or disciplines. The file locations in Version 2 have been
altered to accommodate separate Experiments, AnalysisResults and DesignFunctions files in
each solver’s directory. An example of job-specific information is the ability to control the number of
processors assigned to each discipline separately. This feature allows allocation of memory and processor
resources for a more efficient solution process.

Refer to the user’s manual (Section 18.1) for the details of implementing an MDO problem. There is one
crashworthiness-modal analysis case study in the examples chapter (Section 21.6).

5.3. System identification using nonlinear regression

System identification is a general term used to describe the mathematical tools and algorithms that build
dynamical models such as systems or processes from measured data. The methodology used in LS-OPT
consists of a nonlinear regression procedure to optimize the parameters of a system or material. This
procedure minimizes the errors with respect to given experimental results. Two formulations for system
identification can be used. The first uses the mean squared error (MSE) as the minimization objective, while
the second, the Min-Max formulation, uses the auxiliary problem formulation to minimize the maximum
residual. The MSE approach is commonly used for system identification and has been automated using a
single command. The two formulations are outlined below.

5.3.1. Ordinate-based Curve Matching

Figure 5-1 shows a graph containing curve f(x,z) and points G,(z). The points can be interconnected to form
a curve G(z). fis a computed response curve (e.g. stress or force history) computed at a point x in the
parameter space. The variables x represent unknown parameters in the model. System (e.g. automotive
airbag or dummy model) or material constants are typical of parameters used in constructing finite element
models. The independent state variable z can represent time, but also any other response type such as strain
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or deformation. The target curve G is constant with respect to x and typically represents a test result (e.g.
stress vs. strain or force vs. deformation). f may not be readily available from the analysis code if z does not
represent time. In this case f must first be constructed using a “crossplot” feature (see Section 1.1.1) and the
curve z(¢) to obtain a plot that is comparable to G. Each function f(x,z,) is internally represented by a
response surface so that a typical curve f{x,z) is represented by P internal response surfaces.

In Figure 5-1, seven regression points are shown. The residuals at these points are combined into a Mean
Squared Error norm:

2 2
1<& xX)—-G 1< e (x
g:_sz L Z_ZWP »() (5-6)
PI s, PI s,
G
t Computed curve: f(x,z)
/ Response Surface constructed
. for each interpolated matching
— oint /\
Ny - :
N : Ny
i= i |
3| = 6]
=
E
Test results
Interpolated test curve G(z)

NV

Figure 5-1: Entities in Mean Squared Error formulation

The MSE norm is based on a series of P regression points beginning at the start point z; and terminating at
the end point zp (see Figure 5-1). The s,, p=1,...,P are residual scale factors and the W,, p=1,...,P are
weights applied to the square of the scaled residual (f,- G,) / s, at point p.

The application of optimization to system identification is demonstrated in Section 21.5.

5.3.2. Curve Mapping

A major difficulty with ordinate-based curve matching is that steep parts of the curve are difficult to

incorporate in the matching. Failure material models typically have the characteristic of a steep decline of
the stress-strain curve towards the end of the curve while steep curves also feature in models in which part
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of the behavior (typically the leading part of the curve) is linear. These kinds of problems present a strong
case for incorporation of the abscissa into the curve-matching metric.

A related problem with ordinate-based matching is that the ranges of the computed and target curves often
do not coincide horizontally so that some of the points are ignored. It may even happen that at an interim
stage of the optimization, the two curves do not share any vertical range overlap (there is not a single
vertical line which will cross both the computed and the target curves). This type of problem may cause
instability of the computation because it becomes impossible to quantify the error.

A third problem is that hysteretic curves (curves with more than one possible y-value for some of the x-
values) cannot be quantified because of the non-uniqueness of the ordinate values of the computed curve
with respect to the target curve. l.e. a vertical line may cross the same curve more than once. A logical
approach to comparison of the two curves is to map one of the curves onto the other. Two questions which
immediately arise are how to scale the curves and how to match two curves of unequal length. Scaling is
particularly important since scale changes have an effect on the distances between the two curves. In many
cases (e.g. stress vs. strain) there could be several orders of magnitude difference between the values on the
abscissa and those of the ordinate.

The mathematical literature provides some ideas on curve matching approaches. Two commonly used
metrics for curve matching are the Hausdorff [6] and Fréchet [7] distances. The Hausdorff distance
measures the mismatch between two point sets so is therefore not suitably general for curve matching as
there is no continuous point order. For instance it would not be able to handle a hysteretic curve match. The
Fréchet distance is better suited for curve matching because it takes the continuity of the curves into
account. The Fréchet distance is formally defined as:

Fr(P,Q) = inf max| P(a(1)) - QA (1)

where P and Q are polygonal curves, ¢ €[0,1] represents a position on each curve. The parameters a and f

are used to parameterize the distance whereas we can think of ¢ as “time”. The analogy is that of a dog
walking along the one curve and the dog’s owner walking along the other connected by a leash. Both walk
continuously and monotonically along the curve from the start point to the end point and can vary their
velocities according to o and f. The Fréchet distance is the length of the shortest leash that is sufficient for
traversing both curves in this manner.

In LS-OPT we map the points of the one curve onto the second curve and compute the volume (area)
between the two curves. When both curves are normalized, this typically yields a mismatch error with value
much less than 1 for two reasonably matching curves.

A significant problem is that it is not appropriate to map entire curves to one another. A practical reason
could be that the test curve, which could be the result of digital output from an experiment, is essentially
unedited and therefore contains superfluous points unrelated to the actual behavior of the model. It may also
be that the test curve represents only part of the response, perhaps because a full curve could not be obtained
from the test. In parameter identification this issue becomes particularly critical as curves are typically
computed at widely distributed points throughout the parameter space during the optimization process. This
potential disparity of curve length requires partial mapping of the two curves.
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The steps for computing the curve mismatch are described in full detail below. The reader should refer to
Figure 20 which shows a test curve (in thick red) mapped on to a computed curve. The prime symbol (') is
used to denote the curve on which the test curve is being mapped while the double prime symbol (”) is used
to denote the finally mapped curve. The test curve is shown inside its smallest bounding box, the boundaries
of which are used to normalize the curve. Hence the normalized curve a is in the [(0,0),(1,1)] range.

<" mi")

[y E R

Figure 2: Partial curve mapping of Curve a (in red) to Curve a' with offset. The result is Curve a". The
solid points represent the original vertices of a' whereas the open circles represent the mapped points
representing a''. Curves a and a' are both normalized to the bounding box of a.

The algorithm for computing the curve mismatch error is as follows:

1. Normalize the m point coordinates i of the target curve A to its smallest bounding box to create Curve a.
See Figure 1.

ét_ Xz_Xmin _ Yz_Ymm
l Xmax - Xmin 771 Ymax Ymm

K =MINX, 5 X =max X5 Y, =min¥; ¥, =max},
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2. Normalize the n point coordinates j of the computed curve A’ to the smallest bounding box of 4 to create
curve a’. See Figure 1.
' xj _Xmin ' y(/ _Ymin

é:j =Xmax_Xmin nj =Ymax_Ymin

3. Compute S, the total polygon length of a. Also compute the individual segment lengths o S, :

58, =& =& )+, -n) s i=230um

Here a segment is defined as a part of the curve between two consecutive points, connected by a straight
line.

4. Scale each segment length to the total curve length S:

5=6S8/8; i=23..,m

5. Compute 7, the total polygon length of a’.
6. If §> T, rename a’to a and a to a’. Hence a will always be shorter than a’.

7. Define an offset as a starting point of a curve section of total length S on curve a’. The offset = 4, will

be varied over p = [ to P in order to “slide” Curve a along Curve a’. 1€[0,7—S]. Assume P
) ) .. ) ) T-S
increments in this interval so that each increment has size AL = —— .

8. Set 4,=4,,+AAto create a new section of the computed curve and create point coordinate pairs by
mapping each point of curve a to curve a’. A typical curve segment i on a’ which corresponds to a
segment i on a has length 67, =5 S, (see Fig. 1). This creates a new set of point pairs a'. The

assumption that the length of the mapped section of the long curve is equal to the length of the short
curve is critical to the success of the method.

9. Compute the discrepancy (mismatch error) between the two curves a and a". This is done by summing
the volumes v; representing the individual segment errors. First compute the distances between the point
pairs:

d, =J(&"-E)V +(n,"n,)’

Then compute the volume component of each segment. (Note for m points, there are m-1 segments.)

v =0, i=23,...,m;
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Then sum the volumes to get the final discrepancy:

m
gp = Zvi
i=1

10. Set p = p+1 and repeat from point 8.

11. Find the distance £ = min¢ - This is the best match between the curves a and a’.
P

5.3.3. Minimizing the maximum residual (Min-Max)

In this formulation, the deviations from the respective target values are incorporated as constraint violations,
so that the optimization problem for parameter identification becomes:

Minimize e, (5-7)

subject to

f,(®-G,

<e; p=1..,P

e>0.

This formulation is automatically activated in LS-OPT when specifying both the lower and upper bounds of
f,/s, equal to G, /s . There is therefore no need to define an objective function. This is due to the fact
that an auxiliary problem is automatically solved internally whenever an infeasible design is found, ignoring

the objective function until a feasible design is obtained. When used in parameter identification, the
constraint set is in general never completely satisfied due to the typically over-determined systems used.

Since s, defaults to 1.0, the user is responsible for the normalization in the maximum violation formulation.
This can be done by e.g. using the target value to scale the response f{x) so that:

Sp(X)
G

p
e>0.

-1

<e; p=1L..,P

Omitting the scaling may cause conditioning problems in some cases, especially where constraint values
differ by several orders of magnitude. This option will also be automated in future versions.

5.3.4. Nonlinear regression: Confidence intervals

Assume the nonlinear regression model:
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G(t) = F(t, X)+é&,

where the measured result G is approximated by " and x is a vector of unknown parameters. The nonlinear
least squares problem is obtained from the discretization:

N ( )2
min 2.(G, - F, ™),
X p=l1
is solved to obtain x . The variance o is estimated by

HG—F&j

where F is the P-vector of function values predicted by the model and 7 is the number of parameters. The
100(1-& )% confidence interval for each x; is:

2

2
o = ,

1
P—-n

A

et al2
(xl. .‘xi —xi‘S C, P_n),

where
A -1
¢ =6*(vre) (vre)))
and 2" is the Student ¢-distribution for o .

VF is the Pxn matrix obtained from the n derivatives of the P response functions representing P points at
the optimum x. The optimal solution is therefore calculated first, followed by the confidence interval.

A critical issue is to ensure that VF is not based on a gradient obtained from a spurious response surface
(e.g. occurring due to noise in the response). Monitoring convergence and selected statistical parameters
such as the RMS error and R* can help to estimate a converged result. In many cases material identification
problems involve smooth functions (e.g. tensile tests) so that spurious gradients would normally not be a
problem.

5.4. Worst-case design

Worst-case design involves minimizing an objective with respect to certain variables while maximizing the
objective with respect to other variables. The solution lies in the so-called saddle point of the objective
function and represents a worst-case design. This definition of a worst-case design is different to what is
sometimes referred to as min-max design, where one multi-objective component is minimized while another
is maximized, both with respect to the same variables.
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There is an abundance of examples of worst-case scenarios in mechanical design.

One class of problems involves minimizing design variables and maximizing case or condition variables.
One example in automotive design is the minimization of head injury with respect to the design variables of
the interior trim while maximizing over a range of head orientation angles. Therefore the worst-case design
represents the optimal trim design for the worst-case head orientation. Another example is the minimization
of crashworthiness-related criteria (injury, intrusion, etc.) during a frontal impact while maximizing the
same criteria for a range of off-set angles in an oblique impact situation.

Another class of problems involves the introduction of uncontrollable variables z,,i =1,...,n in addition to
the controlled variables y i J=Lle,m. The controlled variables can be set by the designer and therefore

optimized by the program. The uncontrollable variables are determined by the random variability of
manufacturing processes, loadings, materials, etc. Controlled and uncontrollable variables can be
independent, but can also be associated with one another, i.e. a controlled variable can have an
uncontrollable component.

The methodology requires three features:

1. The introduction of a constant range p of the region of interest for the uncontrollable variables. This
constant represents the possible variation of each uncontrollable parameter or variable. In LS-OPT
this is introduced by specifying a lower limit on the range as being equal to the initial range p. The
lower and upper bounds of the design space are set to /2 for the uncontrollable variables.

2. The controlled and uncontrollable variables must be separated as minimization and maximization
variables. The objective will therefore be minimized with respect to the controlled variables and
maximized with respect to the uncontrollable variables. This requires a special flag in the
optimization algorithm and the formulation of Equation (2.1) becomes:

min{maxf(y,l)}; yeR’ zeR! (5-8)
v z

subject to
g (y,z)<0;  j=12..,1L
The algorithm remains a minimization algorithm but with modified gradients:
Vel = Vy,
v = vz

For a maximization problem the min and max are switched.

3. The dependent set (the subset of y and z that are dependent on each other) x = y + z must be defined
as input for each simulation, e.g. if the manufacturing tolerance on a thickness is specified as the
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uncontrollable component, it is defined as a variation added to a mean value, i.€. f = fimean + Zdeviations
where ¢ is the dependent variable.

5.5. Reliability-based design optimization (RBDO)*

Reliability-based design optimization (RBDO) is the computation of an optimum design subject to
probabilistic bounds on the constraints. The probabilistic bound is usually interpreted in the six-sigma
context; for example, the failure of only one part in a million would be acceptable.

RBDO is currently done using First Order Second Moment (FOSM) method of computing the reliability.
The requested minimum probability of failure is transformed to a number of standard deviations (sigmas) of
the response, and the number of standard deviations (sigmas) is subsequently transformed into a safety
margin used in the optimization process. The standard deviation of a response is computed analytically for
response surfaces, and for the other metamodels and composites a second order local approximation is
created to compute the standard deviation. See Section 6.4.4 for more detail regarding the First Order
Second Moment (FOSM) method. The FOSM methodology is currently the default RBDO method, but
more sophisticated methods may be available in future versions of LS-OPT.

Discrete variables are allowed in RBDO. The mixed-discrete optimization will be carried out considering
the probabilistic bounds on the constraints.

The methods are described in more detail in Section 18.3 with an example in Section 21.2.11 illustrating the
method.

Care must be taken in interpreting the resulting reliability of the responses. Accuracy can be especially poor
at the tail ends of the response distribution. What constitutes engineering accuracy at the low probabilities is
an open question. A definition such as six-sigma may be the best way of specifying the engineering
requirement; a precise numerical value may not be meaningful. Accuracy at low probabilities requires firstly
that the input data must be known accurately at these low probabilities, which may be prohibitively
expensive to estimate.
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6. Probabilistic Fundamentals

6.1. Introduction

No system will be manufactured and operated exactly as designed. Adverse combinations of design and
loading variation may lead to undesirable behavior or failure; therefore, if significant variation exists, a
probabilistic evaluation may be desirable.

Sources of variation are:
1. Variation in structural properties; for example: variation in yield stress.
2. Variation in the environment; for example: variation in a load.

3. Variation occurring during the problem modeling and analysis; for example: buckling initiation,
mesh density, or results output frequency.

From the probabilistic analysis we want to infer:
1. Distribution of the response values.
2. Probability of failure.
3. Properties of the designs associated with failure.
o Variable screening - identify important noise factors.
o Dispersion factors - factors whose settings may increase variability of the responses.

4. Efficient redesign strategies.

6.2. Probabilistic variables

The probabilistic component of a parameter is described using a probability distribution; for example, a
normal distribution. The parameter will therefore have a mean or nominal value as specified by the
distribution, though in actual use the parameter will have a value randomly chosen according to the
probability density function of the distribution.

The relationship between the control variables and the variance can be used to adjust the control process
variables in order to have an optimum process. The variance of the control and noise variables can be used
to predict the variance of the system, which may then be used for redesign. Knowledge of the interaction
between the control and noise variables can be valuable; for example, information such as that the
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dispersion effect of the material variation (a noise variable), may be less at a high process temperature (a
control variable) can be used to selected control variables for a more robust manufacturing process.

6.2.1. Variable linking

A single design parameter can apply to several statistically independent components in a system; for
example: one joint design may be applicable to several joints in the structure.

The components will then all follow the same distribution but the actual value of each component will
differ. Each duplicate component is in effect an additional variable and will result in additional
computational cost (contribute to the curse of dimensionality) for techniques requiring an experimental
design to build an approximation or requiring the derivative information such as FORM. Direct Monte Carlo
simulation on the other hand does not suffer from the curse of dimensionality but is expensive when
evaluating events with a small probability.

Design variables can be linked to have the same expected (nominal) value, but allowed to vary
independently according to the statistical distribution during a probabilistic analysis. One can therefore have
one design variable associated with many probabilistic variables.

Three probabilistic associations between variables are possible:
1. Their nominal values and distributions are the same.
2. Their nominal values differ but they refer to the same distribution.

3. Their nominal values are the same but their distributions differ.

6.3. Basic computations

6.3.1. Mean, variance, standard deviation, and coefficient of variation

The mean of a set of responses is

The variance is

The standard deviation is simply the square root of the variance

s=s?.
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The coefficient of variation, the standard deviation as a proportion of the mean, is computed as
cov.=s/y.
6.3.2. Correlation of responses
Whether a variation in displacements in one location causes a variation in a response value elsewhere is not

always clear.

The covariance of two responses indicates whether a change in the one is associated with a change in the
other.

COV(Yl’Yz): E[(Yl _ﬂl)(Yz _,uz)]ﬂ
Cov(¥,.Y,)= E[V.Y, ]~ E(Y, )E(Y, ).

The covariance can be difficult to use because it is unscaled. The standard deviation of the responses can be
used for scaling. The coefficient of correlation is accordingly

o= Cov(Yl,Yz).

O-l 62
The confidence interval on the coefficient of correlation is described in the next section.

6.3.3. Confidence intervals

The confidence interval on the mean assuming a normal distribution and using s® as an estimate to the
variance is

— A _ S
y - ta/2,n—l < /u < y + ta/Z,n—l s
n Jn

with ¢ the mean, y the estimate to the mean, and ¢, ,_, the relevant critical value of the #-distribution.

The confidence interval on the variance assuming a normal distribution and using s as an estimate to the
variance is

(n—1)s’ <o’ < (n—1)s’

2 2 )
Xai2n-1 Xica/2,n-1

with o the variance and y_,,, . ¥\ 4. the relevant critical values of the y* distribution.
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The confidence interval on the probability of an event is

5 p(1-p) 5 p(1-p)
p_Za/Z n <p<p+za/2 n b

with p the probability, p the estimate to the probability, and z,,, , , the relevant critical value of the normal

distribution.

The coefficient of correlation has a confidence interval of

! t
tanh lln[l-i_’oj— a2V | < p < tanh lln(“—pjjt IZa/2N
2 \l-p) JN-3 2 l-p) JN-3

6.4. Probabilistic methods

The reliability — the probability of not exceeding a constraint value — can be computed using probabilistic
methods.

The accuracy can be limited by the accuracy of the data used in the computations as well as the accuracy of
the simulations. The choice of methods depends on the desired accuracy and intended use of the reliability
information.

More details on probabilistic methods can be found in, for example, the recent text by Haldar and
Mahadevan [1].

6.4.1. Monte Carlo simulation

A Monte Carlo simulation aims to compute results with the same scatter as what will occur in practice.

Multiple analyses are conducted using values of the input variables selected considering their probability
density function. The results from these analyses should have the scatter expected in practice. Under the law
of large numbers the output results will eventually converge.

Applications of a Monte Carlo investigation are:
1. Compute the distribution of the responses, in particular the mean and standard deviation.
2. Compute reliability.
3. Investigate design space — search for outliers.

The approximation to the nominal value is:
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If the X; are independent, the laws of large numbers allow us any degree of accuracy by increasing N. The
error of estimating the nominal value is a random variable with standard deviation

with o the standard deviation of f{x) and N the number of sampling points. The error is therefore unrelated
to the number of design variables.

The error of estimating p, the probability of an event, is a random value with the following variance

ol = P(I_P)’

N

which can be manipulated to provide a minimum sampling. A suggestion for the minimum sampling size
provided by Tu and Choi [2] is:

N=— 10
P[G(x) < 0]

The above indicates that for a 10% estimated probability of failure; about 100 structural evaluations are
required with some confidence on the first digit of failure prediction. To verify an event having a 1%
probability; about a 1000 structural analyses are required, which usually would be too expensive.

A general procedure of obtaining the minimum number of sampling points for a given accuracy is illustrated
using an example at the end of this section. For more information, a statistics text (for example, reference
[3]) should be consulted. A collection of statistical tables and formulae such as the CRC reference [4] will
also be useful.

The variance of the probability estimation must be taken into consideration when comparing two different
designs. The error of estimating the difference of the mean values is a random variable with a variance of

2 2
2 0y [ O,

Oy = o
? Nl N2

with the subscripts 1 and 2 referring to the different design evaluations. The error of estimating the
difference of sample proportions is a random variable with a variance of

o2 _nll=p), p,(1-p))
’ Nl NZ .

The Monte Carlo method can therefore become prohibitively expensive for computing events with small
probabilities; more so if you need to compare different designs.
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The procedure can be sped up using Latin Hypercube sampling, which is available in LS-OPT. These
sampling techniques are described elsewhere in the LS-OPT manual. The experimental design will first be
computed in a normalized, uniformly distributed design space and then transformed to the distributions
specified for the design variables.

Example:

The reliability of a structure is being evaluated. The probability of failure is estimated to be 0.1 and must be
computed to an accuracy of 0.01 with a 95% confidence. The minimum number of function evaluations
must be computed.

For an accuracy of 0.01, we use a confidence interval having a probability of containing the correct value of
0.95. The accuracy of 0.01 is taken as 4.5 standard deviations large using the Tchebysheff’s theorem, which
gives a standard deviation of 0.0022. The minimum number of sampling points is therefore:

24 _ 09O sy
o’ (0.0022)

Tchebysheff’s theorem is quite conservative. If we consider the response to be normally distributed then for
an accuracy of 0.01 and a corresponding confidence interval having a probability of containing the correct
value of 0.95, a confidence interval 1.96 standard deviations wide is required. The resulting standard
deviation is 0.051 and the minimum number of sampling points is accordingly:

NoPD_ (0.9)(0.1) _ 3457
o’ (0.051)

6.4.2. Monte Carlo analysis using metamodels

Performing the Monte Carlo analysis using approximations to the functions instead of FE function
evaluations allows a significant reduction in the cost of the procedure.

A very large number of function evaluations (millions) are possible considering that function evaluations
using the metamodels are very cheap. Accordingly, given an exact approximation to the responses, the exact
probability of an event can be computed.

The choice of the point about which the approximation is constructed has an influence on accuracy.
Accuracy may suffer if the metamodel is not accurate close to the failure initiation hyperplane, G(x) =0. A
metamodel accurate at the failure initiation hyperplane (more specifically the Most Probable Point of
failure) is desirable in the cases of nonlinear responses. The results should however be exact for linear
responses or quadratic responses approximated using a quadratic response surface.
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Using approximations to search for improved designs can be very cost-efficient. Even in cases where
absolute accuracy is not good, the technique can still indicate whether a new design is comparatively better.

The number of FE evaluations required to build the approximations increases linearly with the number of
variables for linear approximations (the default being 1.5n points) and quadratically for quadratic
approximations (the default being 0.75(n+2)(n+1) points).

6.4.3. Correlated variables

Considering the correlation Cov(Y,,Y,)=E [(K —H; )(YJ —H; )J= 2., between variables, we construct the

covariance matrix

le Z12 Zln
Z21 Z“22 z2n
znl znZ znn

from which we compute the eigenvalues and eigenvectors as >, E = I°E with E and A” respectively the
eigenvectors and the eigenvalues of the covariance matrix.

The correlated variables are created by firstly generating independent variables and transforming them back
to being correlated variables using the eigenvalues and eigenvectors of the covariance matrix

X =AE"id" +...+ 2"E"iid" with X the correlated variables and iid the independent variables. This method
is only valid for normally distributed variables.

Consider a function of correlated variables F' = Za .Y, ; the statistics of this functions are computed as
i=1

E(F)= Zai:ui:
i=1

VF) =Y a2V (1) +2Y Y aa,COV(Y,.)).
i=1

i=1 j=i+l

6.4.4. First-Order Second-Moment Method (FOSM)

For these computations we assume a linear expansion of the response. The reliability index of a response
G(X)< 0 is computed as:
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5= ElGO)]

p[G(x)]
with £ and D the expected value and standard deviation operators respectively. A normally distributed
response is assumed for the estimation of the probability of failure giving the probability of failure as:

P, =®(~p) or 1-B(P),

with ®(x) the cumulative distribution function of the normal distribution.

The method therefore (i) computes a safety margin, (ii) scale the safety margin using the standard deviations
of the response, and (iif) then convert the safety margin to a probability of failure by assuming that the
response is normally distributed.

The method is completely accurate when the responses are linear functions of normally distributed design
variables. Otherwise the underlying assumption is less valid at the tail regions of the response distribution.
Caution is advised in the following cases:

1. Nonlinear responses: Say we have a normally distributed stress responses - this implies that fatigue
failure is not normally distributed and that computations based on a normal distribution will not be
accurate.

2. The variables are not normally distributed; for example, one is uniformly distributed. In which case
the following can have an effect:

o A small number of variables may not sum up to a normally distributed response, even for a linear
response.

o The response may be strongly dependent on the behavior of a single variable. The distribution
associated with this variable may then dominate the variation of the response. This is only of
concern if the variable is not normally distributed.

Considering the accuracy of the input data, this method can be reasonable. For example, it should be
common that the distribution of the input data can only be estimated using a mean and a standard deviation
with a 20% error bound, in which case the results should be understood to have at the least a matching
certainty. Interpreting the results in terms of a number of standard deviations can be a reasonable
engineering approximation under these circumstances.

6.4.5. Design for six-sigma methods
See the section for FOSM keeping in mind that the reliability index B is the number of standard deviations.

6.4.6. The most probable point

Probabilistic methods based on the most probable point of failure focus on finding the design perturbation
most likely to cause failure.
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To understand how these methods works, consider the limit state function G(x) dividing the responses into
two design regions: one consisting of acceptable responses and the other of unacceptable responses. The two
regions are separated by the hyperplane described by G(x)=0.

X2
G(x)=0

Failure region

Most ﬁfabable Point

‘_-";Equiprobablc perturbations

X1

Figure 6-1 Finding the most probable point of failure. The most probable point is the point on the line
G(x)=0 closest to the design in the probabilistic sense.

We want to find the design perturbation most likely to cause the design to fail. This is difficult in the
problem as shown in Figure 6-1, because all variables will not have an equal influence of the probability of
failure due to differences in their distributions. In order to efficiently find this design perturbation, we
transform the variables to a space of independent and standardized normal variables, the u-space.
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u2

Failure region

I\'/[o_st probable point

G(x)=0 Ul

_~Equiprobable perturbations

Figure 6-2 Most probable point in the transformed space. In the transformed space the most probable
point is the point on the line G(X)=0 the closest to the origin.

The transformed space is shown in Figure 6-2. The point on the limit state function with the maximum joint
probability is the point the closest to the origin. It is found by solving the following optimization problem:

n
Minimize: | z u’
i=1

Subject to: G(u) =0.

This point is referred to as the most probable point (MPP) and the distance from the origin in the u-space is
referred to as the first-order probability index Brorm.

The advantages of the most probable point are:
1. The MPP gives an indication of the design most likely to fail.

2. Highly accurate reliability methods utilizing an approximation around the MPP are possible.

6.4.7. FORM (First Order Reliability Method)

The Hasofer-Lind transformation is used to normalize the variables:

_NiTH
o.

1

Uu.

1
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The minimization problem is accordingly solved in the u-space to find the first-order probability index
BrorM. Approximations to the responses are used to solve the optimization problem.

The probability of failure is found assuming a normally distributed response as
Pf = (D(— Broru ):

with @ the cumulative density function of the normal distribution.

The error component of the procedure is due to (i) curvature of the constraint, (if) the error component of
the approximating function used in the computations, and (iii) the assumption of a normal distribution for
the computation of failure.

The method is considered conservative considering that disregarding the curvature of the constraint results
in an overestimation of the probability of failure.

6.4.8. Design sensitivity of the most probable point
For a probabilistic variable we use the partial derivative as:

P P O ou,

ox, Of ou, ox,

with 0P/0f the derivative of the CDF function of the normal distribution.

For deterministic variables, which do not have a probabilistic component and therefore no associated u
variables:

or _oPop of
ox, 0B of ox,

1

Wlth aﬂ/af taken as ﬂ/(f;unstru int f;w min al )

For the pathological case of being at the MPP, the vector associated with 3 vanishes and we use:

P 406 ou,
Ox; Ou, Ox,

with 0.4 the relevant value derivative of the CDF function of the normal distribution.
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6.5. Required number of simulations

6.5.1. Overview

A single analysis of a noisy structural event yields only a single value drawn from an unexplored
population. The whole population can be explored and quantified using a probabilistic investigation if the
computational cost is reasonable. The cost of this probabilistic analysis is of quite some concern for FEA
results and is therefore expounded in the following subsections.

Rough rules of thumb:

o 20 FE evaluation, a maximum of 10 design variables, and a metamodel-based probabilistic analysis
for design purposes

o 50 FE evaluations, about 5 design variables, and a metamodel-based probabilistic analysis for a
detailed analysis of the scatter in the results and the role of the design variables

o 100 FE evaluations and a Monte Carlo analysis for very noisy behavior or a very large number of
potentially significant variables. These would be cases where it is very difficult to associate the
variation in results with the design variables and accordingly only quantifying the result is feasible.

6.5.2. Background

The required number of the simulation depends on:
1. Cost of creating an accurate metamodel
2. Cost of estimating the noise variation

3. Cost of observing low-probability events.

If the variation in the responses is mainly due to the variation of the design variables, then the cost of
creating an accurate metamodel dominates. The region of interest for a robustness analysis will not be as
large as to contain significant curvature; therefore a linear or preferably a quadratic response surface should
suffice. In past design optimization work, the number of experiments was successfully taken to be 1.5 times
the number of terms (unknowns) in the metamodel to be estimated. For a robustness analysis, being
conservative at this point in time, a value of twice the number of terms is recommended. The number of
terms for a linear model is k+/ with &k the number of design parameters. The number of terms for a quadratic
response surface is (k+1)(k+2)/2.

The variation in the responses may not be mainly due to the variation of the design variables. In this case,
enough experiments much be conducted to estimate this noise variation with sufficient accuracy. This cost is
additional to the cost of creating the metamodel. The number of experiments required will differ considering
the criteria for accuracy used. For example, we can require the error of estimating the noise variation to be
less than 10%; however, this requires about 150 experiments, which may be too expensive. Considering the
practical constraints for vehicle crash analysis, useful results can be obtained with 25 or more degrees of
freedom of estimating the noise variation. This gives a situation where the error bound on the standard
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deviation is about 20% indicating that it is becoming possible to distinguish the six sigma events from five
sigma events.

For design purposes, the variation of the responses and the role of the design variables are of interest. High
accuracy may be impossible due to lack of information or unreasonable computational costs. A metamodel-
based investigation and 20 FE evaluations can achieve:

1. Investigate up to 10 variable
2. Quantify the contribution of each variable
3. Estimate if the scatter in results is admissible.

If the scatter in FE results is large, then the FE model must be improved, the product redesigned, or a more
comprehensive probabilistic investigation performed. The study should indicate which is required.

A study can be augmented to re-use the existing FE evaluations in a larger study.

If higher accuracy is required, then for approximately 50 simulations one can compute:

o Better quantification of the role of the design variables: Investigate the effect of about five variables
if a quadratic or neural network approximation is used or about 10 variables using linear
approximations.

o Higher accuracy and better understanding of the scatter in the results. Predict effect of frequently
occurring variation with a rare chance of being in error. Outliers may occur during the study and will
be identified as such for investigation by the analyst. Structural events with a small (5% to 10%)
probability of occurring might however not be observed.

The accuracy of these computations must be contrasted to the accuracy to which the variation of the design
parameters is known. These limits on the accuracy, though important for the analyst to understand, should
not prohibit useful conclusions regarding the probabilistic behavior of the structure.

6.5.3. Competing role of variance and bias

In an investigation the important design variables are varied while other sources are kept at a constant value
in order to minimize their influence. In practice the other sources will have an influence. Distinguishing
whether a difference in a response value is due to a deterministic effect or other variation is difficult,
because both always have a joint effect in the computer experiments being considered.

In general [4] the relationship between the responses y and the variables x is:

y= f(x)+5(x)+€,
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with f{x) the metamodel; §(x)=17(x)— f(x), the bias, the difference between the chosen metamodel and the
true functional response 77(x); and & the random deviation.

The bias (fitting error) and variance component both contribute to the residuals. If we compute the variance
of the random deviation using the residuals then the bias component is included in our estimate of the
variance. The estimate of the variance is usually too large in the case of a bias error.

The bias error is minimized by:

1. Choosing the metamodel to be the same as the functional response. The functional response is
however unknown. A reliable approach in the presence of noise is difficult to establish. In particular,
metamodels that can fit exactly to any set of points will fit to the noise thus erroneously stating that
the random deviation is zero; inflexible metamodels will ascribe deterministic effects to noise.

2. Reducing the region of interest to such a size that the difference between metamodel and true
functional response is not significant.

3. Large number of experimental points. This strategy should be used together with the correct
metamodel or a sufficiently small region of interest.

The recommended approach is therefore to use a linear or quadratic response over a subregion small enough
that the bias error should be negligible.

6.5.4. Confidence interval on the mean

For multiple regression, the 100(1-a)% confidence limits on the mean value at X are obtained from

YO * ZLaz/Z,n—pSn—p \')(O(XIX)71 XO B

with sf_ , an estimate to o . At the center of the region of interest for the coded variables the confidence

interval is

YO itaz/Z,n—pSn—p V Cll b

with C,, the first diagonal element of (X' X)'. The confidence bound therefore depends on the variance of
the response and the quality of the experimental design.

More details can be found in, for example, the text by Myers and Montgomery [6].

6.5.5. Confidence interval on a new evaluation

For multiple regression, the 100(1-a)% confidence limits on a new evaluation at X, are obtained from
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Y, +t JI+X, (X X)X, .

a/Z,n—psn—p
The confidence interval for new observations of the mean is

YO t ta/Z,n—pSn—p 1 + Cll b
In the following table we monitor the bounds for a new evaluation of the mean for a linear approximation
using five design variables using a 95% confidence interval. The value of C;; is computed from D-optimal
experimental designs generated using LS-OPT. The error bounds are close to 2¢ for more than 25 existing
runs (20 degrees of freedom).

n p n-p Cu Bounds (6=10% 0=5%)
10 6 4 0.104 +29%
15 6 9 0.070 +23%
20 6 14 0.051 +22%
25 6 19 0.041 +21%
30 6 24 0.034 +21%
50 6 44 0.020 +20%
100 6 94 0.010 +20%

6.5.6. Confidence interval on the noise (stochastic process) variance

The noise (stochastic process) variance can be estimated by considering the residuals of the reponse surface
fit. Events such as a different buckling mode or order of contact events will appear in the residuals because
they cannot be attributed to the variables in the response surface fit. These residuals can also be due to a bias
(lack-of-fit) error, which complicates matters.

The error of estimating the noise variance (¢%) is minimized by:
1. Large number of points

2. Minimizing the bias error. Ideally one wants to observe many occurrences of the same design.

The residual mean square

estimates & with n - p degrees of freedom where 7 is the number of observations and p is the number of
parameters including the mean.
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We want to find an interval [b;, b2] such that P[b1 <s? sz]:0.95. We rewrite as

P{”;zp b, < ”;zp s2 < ”;j’ bz} =0.95. We have (n— p)s>/o” is a chi-squared distribution with n — p

degrees of freedom. From the chi-squared table we can get [a;, a,] such that P[al <! —2p §* < az} =0.95
o

by reading of the values for 0.975 and 0.025. Having [a;, a;] we can compute for [b; b2] as

2 2
( > al,S—aZ]. The 100(1— @)% confidence interval on & is therefore
n-p n—-p

[(n—p)s2 (n_p)szJ

2 > 2
Za/Z,nfp /’Zlfa/z,nfp

In the table below we monitor the error bounds on the variance for a problem with six parameters (including
the mean).

Noise Variance Confidence Interval
n n-p Lower Bound Value (s) Upper Bound
a=5% | 0=10% | 0=20% 0=20% | 0=10% | 0=5%

10 4 5.99 6.49 7.17 10 19.39 23.72 28.74
15 9 6.88 7.29 7.83 10 14.69 16.45 18.25
20 14 7.32 7.69 8.15 10 13.41 14.60 15.77
25 19 7.605 | 7.94 8.36 10 12.77 13.70 14.6
30 24 7.81 8.12 8.50 10 12.38 13.16 13.91
50 46 8.31 8.56 8.86 10 11.59 12.10 12.56
106 100 | 8.78 8.97 9.19 10 11.02 11.33 11.61
206 200 |9.11 9.24 941 10 10.69 10.92 11.09

In the above it was assumed that the metamodel is a sufficiently accurate approximation to the mechanistic
model (the bias error sufficiently small) and that the errors are normally distributed. In general the estimate

of o’ will be depend on the approximation model. For a model-independent estimate, replicate runs
(multiple observations for the same design) are required. If the bias error is significant then the estimate of
o’ will usually be too large [7].

6.5.7. Probability of observing a specific failure mode

A large number of runs may be required to be sure that an event with a specific probability is observed.
1. Probability that the event will be observed at least once (one or more times):
2. P[observing 0 events] = (1-P[event])"

3. P[observing 1 or more events] = 1.0 - (1-P[event])"
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Probability of event Required number of runs for observing 1 or more
occurrences at 95% probability

0.45 5

0.26 10

0.14 20

0.095 30

0.06 50

0.03 100

6.6. Outlier analysis

Outliers are values in poor agreement with the values expected or predicted for a specific combination of
design variable values. Unexpected values may occur due to different buckling modes or modeling
problems. Understanding the cause of the outliers can therefore lead to an improved structure or structural

model.

To be considered an outlier, the change in response value computed must not be completely explained by
the change in design variable value. An expected value of the response value associated with a certain
design is therefore required to judge whether a response is an outlier or not; the value predicted by the
metamodel is used as the expected value.
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4
7 Metamodel N
; (Expected response

FEA Response

Design Variable

Figure 6-3 Outliers are identified after a metamodel has been fitted. Values in poor agreement of what is
predicted by the design variables are considered outliers.

Metamodels are therefore useful to separate the effect of design variable changes from the other types of
variation. The design variable cause-effect relationship is contained by the metamodel. The residuals of the
fitting procedure are the variation not explained by changes in the design variables. The outliers therefore
contain amongst others the bifurcation (buckling) effects.

The outliers are best investigated visually in LS-PrePost by considering the deformation of the structure. A
useful metric is computing the outliers for the displacement of every node in the structure and to fringe plot
the standard deviation of these outliers. Fringe plots of the index of the run associated with the maximum or
minimum displacement outlier can be used to identify different buckling modes.

6.7. Stochastic contribution analysis

The variation of the response can be broken down in contributions from each design variable.
6.7.1. Linear estimation

The contribution can be estimated as:

o,, =0G/xo,,
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with o, the standard deviation of the variable i and o, the standard deviation of the variation of function

g due to the variation of variable i.

The variance for all the variables is found as the sum of the variance:
O-ﬁ = z Giz

where o, is the variation of the response due to the variation of all the variables and &/ is the variation of

response due to the variation of variable i. In the above it is assumed that the response is a linear response of
the design variables and independent variables. If correlation between variables exists, then it is taken into
account as documented in section 6.4.3.

6.7.2. Second and higher order estimation

For higher order effects, one must consider the interaction between different design variables as well as
curvature. If a variation is due to the interaction of two variables, then the effect of one variable on the
variation depends on the current value of the other. This is in contrast with problems described by first order
effects, for which the effect of variables can be investigated independently; if interactions exist, this is no
longer true.

The effect of a variable can be described in terms of its main or total effect. The main effect of a variable is
computed as if it were the only variable in the system, while the total effect considers the interaction with
other variables as well. The advantage of using the total effect is that the interaction terms, which can be
significant, are included. For linear systems, the main and total effects are therefore the same. The second
order effects must be computed, which increases computational costs considerably.

The variance of the response, assuming independent variables, can be written using the Sobol’s indices
approach [8] [9]. Firstly the function is decomposed as:

S, )= fy 313 S ) bt oy (e, ).

i=1 j=i+l

From which partial variances are computed as:

..........

with the variance of the response summed from the partial variances as:

V=XV 4DV, +. 4V, .

i<j

The sensitivity indices are given as:
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S, =Vl_/V, 1<i<n,
S, = U,/V, 1<i<j<n,
Si,i+1 ..... n :Vi,i+1 ..... n/V'

with the useful property that all of the sensitivity indices sum to 1:

DS AY S+ S, L, =1

i<j

Using Monte Carlo, the main effect can be computed as

1 1 2 1 72
Zf( it?n’ £1211) ( £trzt’x£i2n)_f0

with x_, is the subset of variables not containing x,.

The total effect of a variable can also be computed as:

S, =1-8

i ~i*

Using Monte Carlo, the total effect can be computed by considering the effects not containing x,
Zf( O O ) ( CE) )_ 72
For second order response surfaces this can be computed analytically [10] as

Z Bim,,—c)+(B, +ﬁl,ul+2ﬁ,,u,) ol +(B, +ﬂ,,u,+2ﬂyu,)ﬂ,,m13 +Z Z jolo]

ieU ieU ieU, 21

with m;; the jth moment about the mean of the distribution i and U the set of variables under consideration.

The stochastic contribution is computed analytically only for responses surfaces. For neural networks,
Kriging models, and composite functions, two options are currently available:

o Approximate using second order response surface. The response surface is built using three times
the number of terms in the response surface using a central points Latin hypercube experimental
design over a range of plus/minus two standard deviations around the mean.

o Using a Monte Carlo analysis. Many points (10,000 or more) are required. This option is used to
compute the variance when there is correlation between variables. Note that a small number of
points can results in negative values of the variance; these negative values should be small relative to
the maximum variances obtained though.
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Correlations between variables are not considered in the computation of the main and total effects of the
variables.

6.8. Robust parameter design

Robust parameter design selects designs insensitive to changes in given parameters.

The field of robust design relies heavily on the work of Taguchi. Taguchi’s insight was that it costs more to
control the sources of variation than to make the process insensitive to these variations [11]. An alternate
view of Taguchi [12] is that building quality into a product is preferable to inspecting for quality. Also, in
simulation, the actual results of a robust system are more likely to conform to the anticipated results [11].

The robust design problem definition requires considering two sets of variables: (i) the noise variables
causing the variation of the response and (ii) the control variables which are adjusted to minimize the effect
of the noise variables. The method adjusts the control variables to find a location in design space with
reduced gradients so that variation of the noise variable causes the minimum variation of the responses.

6.8.1. Fundamentals

The robustness of a structure depends on the gradient of the response function as shown in Figure 6-4. A flat
gradient will transmit little of the variability of the variable to the response, while a steep gradient will
amplify the variability of the variable. Robust design is therefore a search for reduced gradients resulting in
less variability of the response.

Stress

Area

%, Force
VANYAAN

Area

Stress = Force / Area

S\

n
\

A

J

Figure 6-4 Robustness considering a single variable. Larger mean values of the area result in a smaller
dispersion of the stress values. Note that the dispersion of the stress depends on the gradient of the stress-
area relationship.

The variation of the response is caused by a number of variables, some which are not under the control of
the designer. The variables are split in two sets of variables:
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1. Control variables. The variables (design parameters) under the control of the designer are called
control variables,

2. Noise variables. The parameter not under the control of the designer are called noise variables.

The relationship between the noise and control variables as shown in Figure 6-5 is considered in the
selecting of a robust design. The control variables are adjusted to find a design with a low derivative with
respect to the noise variable.

. "Mj Response /
| 27 7S L _
2 / X
E——
| J —

Noise Variable, z

e

—1

Figure 6-5 Robustness of a problem with both control and noise variables. The effect of the noise
variable z on the response variation can be constrained using the control variable x. For robustness, the
important property is the gradient of the response with respect to the noise variable. This gradient
prescribes the noise in the response and can be controlled using the control variables. The gradient, as
shown in the figure, is large for large values of the control variable. Smaller values of the control
variable will therefore result in a more robust design, because of the lower gradient and accordingly less
scatter in the response.

6.8.2. Methodology

The dual response surface method as proposed by Myers and Montgomery [6] using separate models for
process mean and variance is considered. Consider the control variables x and noise variables z with

Var(z) = o1 . - The response surface for the mean is E, [y(x,z)] = B+x B +x Px considering that the noise

variables have a constant mean. Response surface for variance considering only the variance of the noise
variables is Var.[y(x,z)]= o2l (x)I(x)+ o with Var(z)=c’1,, o’ the model error variance, and [ the

r, 2

vector of partial derivatives /(x) = dy(x,z)/0z.

The search direction required to find a more robust design is requires the investigation of the interaction
terms x;z;. For finding an improved design, the interaction terms are therefore required. Finding the optimum
in a large design space or a design space with a lot of curvature requires either an iterative strategy or higher
order terms in the response surface.
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For robust design, it is required to minimize the variance, but the process mean cannot be ignored. Doing
this using the dual response surface approach is much simpler than using the Taguchi approach because
multicriteria optimization can be used. Taguchi identified three targets: smaller is better, larger is better, and
target is best. Under the Taguchi approach, the process variance and mean is combined into a single
objective using a signal-to-noise ratio (SNR). The dual response surface method as used in LS-OPT does
not require the use of a SNR objective. Fortunately so, because there is wealth of literature in which SNRs
are criticized [6]. With the dual response surface approach both the variance and mean can be used, together
or separately, as objective or constraints. Multicriteria optimization can be used to resolve a conflict
between process variance and mean as for any other optimization problem.

Visualization is an important part of investigating and increasing robustness. As Myers and Montgomery
state : “The more emphasis that is placed on learning about the process, the less important absolute
optimization becomes.”

6.8.3. Experimental design

One extra consideration is required to select an experimental design for robust analysis: provision must be
made to study the interaction between the noise and control variables. Finding a more robust design requires
that the experimental design considers the x;z; cross-terms, while the xiz and Zj2 terms can be included for a
more accurate computation of the variance.

The crossed arrays of the Taguchi approach are not required in this response surface approach where both
the mean value and variance are computed using a single model. Instead combined arrays are used which
use a single array considering x and z combined.
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7.

7.1.

Design Optimization Process

A modus operandi for design using response surfaces

7.1.1. Preparation for design

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and
the designer needs to be familiar with the model, procedure and design tools well in advance. The following
points are considered important:

1.

The user should be familiar with and have confidence in the accuracy of the model (e.g., finite
element model) used for the design. Without a reliable model, the design would make little or no
sense.

Select suitable criteria to formulate the design. The responses represented in the criteria must be
produced by the analyses and be accessible to LS-OPT.

Request the necessary output from the analysis program and set appropriate time intervals for time-
dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the
available storage space.

Run at least one simulation using LS-OPT (baseline design). To save time, the termination time of
the simulation can be reduced substantially. This exercise will test the response extraction
commands and various other features. Automated response checking is available, but manual
checking is still recommended.

Just as in the case of traditional simulation it is advisable to dump restart files for long simulations.
LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose,
the runrsf file is required when using LS-DYNA as solver.

Determine suitable design parameters. In the beginning, it is important to select many rather than
few design variables. If more than one discipline is involved in the design, some interdisciplinary
discussion is required with regard to the choice of design variables.

Determine suitable starting values for the design parameters. The starting values are an estimate of
the optimum design. These values can be acquired from a present design if it exists. The starting
design will form the center point of the first region of interest.

Choose a design space. This is represented by absolute bounds on the variables that you have
chosen. The responses may also be bounded if previous information of the functional responses is
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available. Even a simple approximation of the design response can be useful to determine
approximate function bounds for conducting an analysis.

9. Choose a suitable starting design range for the design variables. The range should be neither too
small, nor too large. A small design region is conservative but may require many iterations to
converge or may not allow convergence of the design at all. It may be too small to capture the
variability of the response because of the dominance of noise. It may also be too large, such that a
large modeling error is introduced. This is usually less serious as the region of interest is gradually
reduced during the optimization process.

10. If the user has trouble deciding the size of the starting range, it should be omitted. In this case the
full design space is chosen.

11. Choose a suitable order for the design approximations when using polynomial response surfaces (the
default). A good starting approximation is linear because it requires the least number of analyses to
construct. However, it is also the least accurate. The choice therefore also depends on the available
resources. However, linear experimental designs can be easily augmented to incorporate higher order
terms.

Before choosing a metamodel, please also consult Sections 3.3 and 4.5.

After suitable preparation, the optimization process may now be commenced. At this point, the user has to
decide whether to use an automated iterative procedure (Section 3.3) or whether to firstly perform variable
screening (through ANOVA) based on one or a few iterations. Variable screening is important for reducing
the number of design variables, and therefore the overall computational time. Variable screening is
illustrated in two examples (see Sections 21.6 and 21.7).

An automated iterative procedure can be conducted with any choice of approximating function. It
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that
points are sequentially added to the full design space. This becomes necessary if the user wants to explore
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is
probably the best to use a sequential linear approximation method with domain reduction, especially if there
is a large number of design variables. See also Section 4.5.

A step-by-step semi-automated procedure can be just as useful, since it allows the designer to proceed more
resourcefully. Computer time can be wasted with iterative methods, especially if handled carelessly. It
mostly pays to pause after the first iteration to allow verification of the data and design formulation and
inspection of the results, including ANOVA data. In many cases, it takes only 2 to 3 iterations to achieve a
reasonably optimal design. An improvement of the design can usually be achieved within one iteration.

A suggested step-by-step semi-automated procedure is outlined as follows:
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7.1.2. A step-by-step design optimization procedure

1.

Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the
linear approximation using any of the error parameters. Inspect the main effects by looking at the
ANOVA results. This will highlight insignificant variables that may be removed from the problem.
An ANOVA is simply a single iteration run, typically using a linear response surface to investigate
main and/or interaction effects. The ANOVA results can be viewed in the post-processor (see
Section 17.3.4).

If the linear approximation is not accurate enough, add enough points to enable the construction of a
quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can
be added to assess the accuracy of the interaction and/or elliptic approximations. Radial Basis
Functions (Section 3.1.3) can also be used as more flexible higher order functions (They do not
require a minimum number of points).

If the higher order approximation is not accurate enough, the problem may be twofold:
o There is significant noise in the design response.

o There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to
enable an accurate quadratic approximation.

In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of
the noise, e.g. when considering acceleration-related responses, was filtering performed? Are
sufficient significant digits available for the response in the extraction database (not a problem when
using LS-DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly?
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled
may be chaotic or random, leading to a noisy response. In this case, the user could implement
reliability-based design optimization techniques as described in Section 5.5. Thirdly, other less
noisy, but still relevant, design responses could be considered as alternative objective or constraint
functions in the formulation of the optimization problem.

In case (3b), the subregion can be made smaller.

In most cases the source of discrepancy cannot be identified, so in either case a further iteration
would be required to determine whether the design can be improved.

Optimize the approximate subproblem. The solution will be either in the interior or on the boundary
of the subregion.

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a
reduced subregion size.
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If the solution is on the boundary of the subregion the desired solution is probably beyond the region.
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built.
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size
of the new region.

The whole procedure can then be repeated for the new subregion and is repeated automatically when
selecting a larger number of iterations initially.

7.2. Recommended test procedure

A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time
should be spent in checking that the optimization runs will yield useful results. A common problem is to not
check the robustness of the design so that some of the solver runs are aborted due to unreasonable
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry.

The following general procedure is therefore recommended:

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the
extreme corners of the chosen design space. Run these designs to their full term (in the case of time-
dependent analysis). Two important designs are those with all the design variables set at their
minimum and maximum values. The starting design can be run by selecting ‘0’ as the number of
iterations in the Run panel.

2. Modify the input to define the experimental design for a full analysis.

3. For a time dependent analysis or non-linear analysis, reduce the termination time or load
significantly to test the logistics and features of the problem and solution procedure.

4. Execute LS-OPT with the full problem specified and monitor the process.

Also refer to Section 7.1.

7.3. Pitfalls in design optimization

A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using
numerical sensitivity analysis have already been discussed and will not be repeated in detail.

7.3.1. Global optimality

The Karush-Kuhn-Tucker conditions govern the local optimality of a point. However, there may be more
than one optimum in the design space. This is typical of most designs, and even the simplest design problem
(such as the well known 10-bar truss sizing problem with 10 design variables), may have more than one
optimum. The objective is, of course, to find the global optimum. Many gradient-based as well as discrete
optimal design methods have been devised to address global optimality rigorously, but as there is no
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mathematical criterion available for global optimality, nothing short of an exhaustive search method can
determine whether a design is optimal or not. Most global optimization methods require large numbers of
function evaluations (simulations). In LS-OPT, global optimality is treated on the level of the approximate
subproblem through a multi-start method originating at all the experimental design points. If the user can
afford to run a direct optimization procedure, a Genetic Algorithm (Section 4.8) can be used.

7.3.2. Noise

Although noise may evince the same problems as global optimality, the term refers more to a high
frequency, randomly jagged response than an undulating one. This may be largely due to numerical round-
off and/or chaotic behavior. Even though the application of analytical or semi-analytical design sensitivities
for ‘noisy’ problems is currently an active research subject, suitable gradient-based optimization methods
which can be applied to impact and metal-forming problems are not likely to be forthcoming. This is largely
because of the continuity requirements of optimization algorithms and the increased expense of the
sensitivity analysis. Although fewer function evaluations are required, analytical sensitivity analysis is
costly to implement and probably even more costly to parallelize.

7.3.3. Non-robust designs

Because RSM is a global approximation method, the experimental design may contain designs in the remote
corners of the region of interest which are prone to failure during simulation (aside from the fact that the
designer may not be remotely interested in these designs). An example is the identification of the parameters
of a monotonic load curve which in some of the parameter sets proposed by the experimental design may be
non-monotonic. This may cause unexpected behavior and possible failure of the simulation process. This is
almost always an indication that the design formulation is non-robust. In most cases poor design
formulations can be eliminated by providing suitable constraints to the problem and using these to limit
future experimental designs to a ‘reasonable’ design space (see Section 2.2.8).

7.3.4. Impossible designs

The set of impossible designs represents a ‘hole’ in the design space. A simple example is a two-bar truss
structure with each of the truss members being assigned a length parameter. An impossible design occurs
when the design variables are such that the sum of the lengths becomes smaller than the base measurement,
and the truss becomes unassemblable. It can also occur if the design space is violated resulting in
unreasonable variables such as non-positive sizes of members or angles outside the range of operability. In
complex structures it may be difficult to formulate explicit bounds of impossible regions or ‘holes’.

7.3.5. Non-unique designs

In some cases multiple solutions will give the same or similar values for the objective function. The
phenomenon often appears in under-defined parameter identification problems. The underlying problem is
that of a singular system of equations having more than one solution. The symptoms of non-uniqueness are:

o Different solutions are found having the same objective function values

o The confidence interval for a non-linear regression problem is very large, signaling a singular system
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For nonlinear regression problems, the user should ensure that the test/target results are sufficient. It could
be that the data set is large but that some of the parameters are insensitive to the functions corresponding to
the data. An example is the determination of the Young’s modulus (£) of a material, but having test points
only in the plastic range of deformation (see example Section 21.5). In this case the response functions are
insensitive to £ and will show a very high confidence interval for £ (Section 21.5.4).

The difference between a non-robust design and an impossible one is that the non-robust design may show

unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at
all.

Impossible designs are common in mechanism design.
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8. Graphical User Interface and
Command Language

This chapter introduces the graphical user interface, the command language and describes syntax rules for
names of variables, strings and expressions.

8.1. LS-OPT user interface (LS-OPTui)

LS-OPT can be operated in one of two modes. The first is through a graphical user interface, LS-OPTui, and
the second through the command line using the Design Command Language (DCL).

The user interface is launched with the command
lsoptui [command file]

The layout of the menu structure (Figure 8-1) mimics the optimization setup process, starting from the
problem description, through the selection of design variables and experimental design, the definition and
responses, and finally the formulation of the optimization problem (objectives and constraints). The run
information (number of processors, monitoring and termination criteria) is also controlled via LS-OPTui.
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File View Task Help

Info | Strategy | Solvers | Dist | Variables | Sampling ‘ Histories ‘ Responses ‘ Objective ‘ Constraints | Algorithms ‘ Run ‘ Viewer ‘ DY NA Stats

LS-OPT User Interface

3
/ _s. “ \ LSTC Version 4.1 (Revision 56174)
Livermore Software . St 1t_)y . - :
“ ﬂI f”‘g" Technology Corp. ivermore Software Technology Corporation
‘N‘HWW (C) Copyright 2000-2009 - All Rights Reserved
Task: Repair

Problem description
Optimization Problem

Author

Current working directory
/homeftushar/optQAICLASS_EXAMPLES/DESIGN_OPTIMIZATION/USER_DEFINED/CONSTRAINED_VARS_LINEAR
Current project file

com.userdef constrained.correct

Last modified

Mon Dec 29 15:24:51 2008

Figure 8-1: Information panel in LS-OPTui

8.2. Problem description and author name

In LS-OPTui, the Info (main) panel has fields for the entering of the problem description and author
information.

Command file syntax

problem description
author author name

A description of the problem can be given in double quotes. This description is echoed in the 1sopt
input and 1sopt output files and in the plot file titles.

Example:
"Frontal Impact"
author "Jim Brown"

The number of variables and constraints are echoed from the graphical user input. These can be modified by
the user in the command file.

Command file syntax:
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solvers number of solvers < 1 >

constants number of constants < 0 >

variables number of variables

dependents number of dependent variables < 0 >
histories number of response histories < 0 >
responses number of responses

composites number of composites < 0 >
objectives number of objectives < 0 >
constraints number of constraints < 0 >
distributions number of distributions < 0 >

Example:
variable 2
constraint 1
responses 2
objectives 2

The most important data commands are the definitions. These serve to define the various entities which
constitute the design problem namely solvers, variables, results, matrices, responses, objectives, constraints
and composites. The definition commands are:

solver package_name
constant name value
variable name value
dependent name value

result name string

history name string

matrix name string

response hame string
composite name type type
composite name string
objective name entity weight
constraint name entity name

Each definition identifies the entity with a name. “Results” and “matrices” do not require a count. Other
entities will be phased out in future.

8.3. Command language

The command input file is a sequence of text commands describing the design optimization process. It is
also written automatically by LS-OPTui.
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The Design Command Language (DCL) is used as a medium for defining the input to the design process.
This language is based on approximately 200 command phrases drawing on a vocabulary of about 200
words. Names can be used to describe the various design entities. The command input file combines a
sequence of text commands describing the design optimization process. The command syntax is not case
sensitive.

8.3.1. Names

Entities such as variables, responses, etc. are identified by their names. The following entities must be given
unique names:

solver
constant
variable
dependent
result
history
matrix
response
composite
objective
constraint

A name is specified in single quotes, e.g.

solver dyna ‘DYNA side impact’

constant ’'Young modulus’ 50000.0

variable ‘Delta’ 1.5

dependent ’‘new modulus’ {Young modulus + Delta}

result ’'x acc’ "BinoutResponse -res type rcforc -cmp z force -id 1
-side SLAVE -select TIME -end time 0.002"

Matrix ’strain’ {Matrix3x3Init(0.001,0.002,0.0035, a,b,c, d,e,f)}

History 'y vel’ "DynaASCII nodout Y VEL 187705 TIMESTEP 0 SAE 30"

Response ’'x _acc’ "DynaASCII rbdout X ACC 21 AVE"

composite ’‘deformation’ type targeted

composite ’‘sqgdef’ {sqgrt(deformation) }

objective ’'deformation’ composite ‘deformation’ 1.0

constraint ’‘Mass’ response ’‘Mass’

In addition to numbers 0-9, upper or lower case letters, a name can contain any of the following characters:

. The leading character must be alphabetical. Spaces are not allowed. A name length is limited to 61
characters.

Note:

Because mathematical expressions can be constructed using various entities in the same formula,
duplication of names is not allowed.
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8.3.2. Command lines

Preprocessor commands, solver commands or response extraction commands are enclosed in double quotes,
e.g.,

S SPECIFICATION OF PREPROCESSOR AND SOLVER

preprocessor command "/usr/ls-dyna/ingrid"

solver command "/alphaé 2/usr/ls-dyna/bin/ls-dyna 9402 dec 40"
S IDENTIFICATION OF THE RESPONSE

response ’‘displacement’ "DynaRelativeDisp 0.2"

response 'Force’ "Myforce"

In addition to numbers 0 -9, upper or lower case letters and spaces, a command line can contain any of the
following characters:

=-."/<>; "

In the command input file, a line starting with the character $ is ignored. A command must be specified on
a single line.

8.3.3. File names

Input file names for the solver and preprocessor must be specified in double quotes.

prepro input file "plli"
solver input file "side impact"

8.3.4. Command file structure

The commands are arranged in two categories:
problem data
solution tasks

There are several commands for specifying the available tasks. The remaining commands are for the
specification of problem data. A solution task command serves to execute a solver or processor while the
other commands store the design data in memory.

In the following chapters, the command descriptions can be easily found by looking for the large typescript
bounded by horizontal lines. Otherwise the reader may refer to the quick reference manual that also serves
as an index. The default values are given in angular brackets, e.g. <1 >.

8.3.5. Environments

Environments have been defined to represent all dependent entities that follow. The only environments in
LS-OPT are for

o solver identifier_name

All responses, response histories, solver variables, solver experiments and solver-related job information
defined within this environment are associated with the particular solver.
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o strict, slack/soft Pertains to the strictness of constraints. See Sections 15.5.

move, stay Pertains to whether constraints should be used to define a reasonable design space or not for
the experimental design. See Section 13.8.

8.3.6. Expressions
Each entity can be defined as a standard formula, a mathematical expression or can be computed with a
user-supplied program that reads the values of known entities. The bullets below indicate which options

apply to the various entities. Variables are initialized as specified numbers.

Table 8-1: Expression options of optimization entities

Entity Standard | Expression User-defined
Variable

Dependent °

Result ° ) °

Matrix °

History ° ) °

Response ° ° °

Composite ° °

A list of mathematical and special function expressions that may be used is given in Appendix D :
Mathematical Expressions.
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9. Program Execution

This chapter describes the directory structure, output and status files, and logistical handling of a simulation-
based optimization run.

9.1. Work directory

Create a work directory to keep the main command file, input files and other command files as well as the
LS-OPT program output.

9.2. Execution commands

lsoptui command File_name | Execute the graphical user interface
lsopt command File_name LS-OPT batch execution

lsopt info Create a log file for licensing

lsopt env Check the LS-OPT environment setting
viewer command File_name | Execute the graphical postprocessor

The LS-OPT environment is automatically set to the location of the 1 sopt executable.

9.3. Directory structure

When conducting an analysis in which response evaluations are done for each of the design points, a sub-
directory will automatically be created for each analysis.
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Command file
Input files
Output files
Plot files

| Database files }—@y/@ Solver 2

Simulation files ‘ -

prermediate files 1.1 |[1.2][1.3][2.4][25]  [11][12][13][14][15]

Plot files, e.g. FLD

Work directory

Run directories

Figure 9-1 : Directory structure in LS-OPT

These sub-directories are named solver name/mmm.nnnn, where mmm represents the iteration number and
nnnn is a number starting from 1. solver name represents the solver interface specified with the command,

e.g.

solver dyna ’'side_ impact’

In this case dyna is a reserved package name and side impact is the name of an analysis case chosen
by the user. The work directory needs to contain at least the command file and the template input files.
Various other files may be required such as a command file for a preprocessor. An example of a sub-
directory name, defined by LS-OPT, is side impact/3.11, where 3.11 represents the design point
number of iteration 3. The creation of subdirectories is automated and the user only needs to deal with the
working directory.

In the case of simulation runs being conducted on remote nodes, a replica of the run directory is
automatically created on the remote machine. The response.n and history. n files will automatically
be transferred back to the local run directory at the end of the simulation run. These are the only files
required by LS-OPT for further processing.

9.4. Job monitoring

The job status is automatically reported at a regular interval. The user can also specify the interval. The
interface, LS-OPTui reports the progress of the jobs in the Run panel (see Section 16.8). The text screen
output while running both the batch and the graphical version also reports the status as follows:

JobID Status PID Remaining

1 Norma l termination!

2 Running 8427 00:01:38 (91% complete)
3 Running 8428 00:01:16 (93% complete)
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4 Running 8429 00:00:21 (97% complete)
5 Running 8430 00:01:13 (93% complete)
6 Running 8452 00:21:59 (0% complete)
7 Waiting

8 Waiting

In the batch version, the user may also type control-C to get the following response:

Jobs started

Got control C. Trying to pause scheduler

Enter the type of sense switch:

swl: Terminate all running jobs

sw2: Get a current job status report for all jobs
t: Set the report interval

v: Toggle the reporting status level to verbose
stop: Suspend all jobs

cont: Continue all jobs

c: Continue the program without taking any action
Program will resume in 15 seconds if you do not enter a choice switch:

If v 1is selected, more detailed information of the jobs is provided, namely event time, time step, internal
energy, ratio of total to internal energy, kinetic energy and total velocity.

9.5. Result extraction

Each simulation run is immediately followed by a result extraction to create the history.n and
response.n files for that particular design point. For distributed simulation runs, this extraction process is
executed on the remote machine. The history.n and response.n files are subsequently transferred to
the local run directory.

9.6. Restarting

Restarting is conducted by giving the command:
lsopt command file name, or by selecting the Run button in the Run panel of LS-OPTui.

Completed simulation runs will be ignored, while half completed runs will be restarted automatically.
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its
name and dump frequency.

The following procedure must be followed when restarting a design run:

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-
OPT will determine the status of progress made during a previous run from status and output files in
the directories. Important data such as response values (response.n files), response histories
(history.n files) are kept only in the run directories and is not available elsewhere.
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2. In most cases, after a failed run, the optimization run can be restarted as if starting from the
beginning. There are a few notable exceptions:

o A single iteration has been carried out but the design formulation is incorrect and must be
changed.

o Incorrect data was extracted, e.g., for the wrong node or in the wrong direction.
o The user wants to change the response surface type, but keep the original experimental design.

In the above cases, all the history.n and response.n files must be deleted. After restarting, the data
will then be newly extracted and the subsequent phases will be executed. A restart will only be able
to retain the data of the first iteration if more than one iteration was completed. The directories of the
other higher iterations must be deleted in their entirety. Unless the database was deleted (by, e.g.,
using the clean file, see Section 9.9), no simulations will be unnecessarily repeated, and the
simulation run should continue normally.

3. A restart can be made from any particular iteration by selecting the ‘Specify Starting Iteration’
button on the Run panel, and entering the iteration number. The subdirectories representing this
iteration and all higher-numbered iterations will be deleted after selecting the Run button and
confirming the selection.

4. The number of points can be changed for a restart (see Section 13.14).

9.7. Output files

The following files are intermediate database files containing ASCII data.

Table 9-1: Intermediate ASCII database files

Database file Description Directory

Trial designs computed as a result of the

Experiments n.csv ) . Case
- experimental design
.xml file containing all the extracted
AnalysisResults_n.lsox | results including responses, matrices and Case
histories.
. The same trial designs and the responses
AnalysisResults n.csv Case
Y — extracted from the solver database
DesignFunctions Parameters of the approximate functions Case

VirtualHistoryFunction | Approximation functions data for histories | Main

Variable, response and error history of the

OptimizationHistory . .. Main
successive approximation process

OptimizerHistory Detailed history of the optimizer Main

ExtendedResults All variables, responses and extended Case

results at each trial design point
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Parameters of the metamodel of function
Net . funcname ) Case
with name funcname

The variable values, confidence intervals

Variables.n and bounds Main
A more detailed description of the database is available in Appendix C.
The output files are as follows:
Table 9-2: Output files
Database file Description Directory Vle.w
option
lsopt input Input in a formatted style Work Input
Results and some logging
lsopt output information. Usually a very large Work Output
file.
A final report of the analysis
results. Available for some of the
lsopt_report main tasks and most of the Repair Work Summary
tasks

This file communicates the current
status of the LSOPT databases to
lsopt db other LSTC programs. The content | Work File
of this file is subject to change
between versions of LS-OPT.
All variable, responses and
lsopt results n.binout’ extepded results'of the non- Work
- - dominated solutions at each

iteration

“This binary file is equivalent to the TradeOff. * files in the older versions.

The following files are in a .csv (comma separated variables) format:

Table 9-3: Result files in .csv format

Database file Description Directory | Remarks

Experiments (n = iteration

number) Case

Experiments n.csv
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AnalysisResults n.csv

Analysis Results

Case

ExtendedResultsMaster n.csv

Extended Results (variables,
dependents, responses, composites,
objectives, constraints,
multiobjective)

Case

ExtendedResultsMETAMaster n.

csv

Extended Results file for user-
defined Experiments file

Case

See Section 0

PRESS predictions n.csv

PRESS (Section 2.3.4) predicted
results and PRESS residuals
(Polynomials and Radial Basis
Function networks (Section 3.1.2)
only. PRESS residuals are not
computed for Feedforward Neural
Networks)

Case

Use check
box to select
PRESS in
Viewer—
Accuracy—

OptimizerHistory n.csv

Detailed history of the optimizer
for iteration n

Work

9.8. Log files and status files

Status files prepro, replace, started, finished, history.n, response.n and EXIT STATUS are placed in the
run directories to indicate the status of the solution progress. The directories can be cleaned to free disk
space but selected status files must remain intact to ensure that a restart can be executed if necessary.

A brief explanation is given below.

Table 9-4: Status files generated by LS-OPT

prepro The preprocessing has been done.

replace The variables have been replaced in the input files.

started The run has been started.

finished The run has been completed. The completion status is given in the file.
response.n | Response number n has been extracted.

history.n History number » has been extracted.

EXIT STATUS | Error message after termination.

o The user interface LS-OPTui uses the message in the EXIT STATUS file as a pop-up message.

o The 1fop.1log file contains a log of the core optimization solver solution.
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o The simulation run/extraction log is saved in a file called Llognnnnnn in the local run directory,
where nnnnnn represents the process ID number of the run. An example of a logfile name is
log234771.

Please refer to Section 9.6 for restarting an optimization run.

9.9. Managing disk space during run time

During a successive approximation procedure, superfluous data can be erased after each run while keeping
all the necessary data and status files (see above and example below). For this purpose the user can provide
a file named clean containing the required erase statements such as:

rm -rf d3*

rm -rf elout
rm -rf nodout
rm -rf rcforc

The clean file will be executed immediately after each simulation and will clean all the run directories
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest
level directories or the log files prepro, started, replace, finished, response.n or
history.n (which must remain in the lowest level directories). These directories and log files indicate
different levels of completion status which are essential for effective restarting. Each file
response . response_number contains the extracted value for the response: response number. E.g., the
file response.2 contains the extracted value of response 2. The essential data is thus preserved even if
all solver data files are deleted. The response_number starts from 0.

Complete histories are similarly kept in histoxry . history _number.

The minimal list to ensure proper restarting is:

prepro
XPoint
replace
started
finished
response.0
response.l

history.0
history.1
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Remarks:

1. The clean file must be created in the work directory.
2. Ifthe clean file is absent, all data will be kept for all the iterations.

3. For remote simulations, the clean file will be executed on the remote machine.
9.10. Error termination of a solver run
The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. Results of abnormally

terminated jobs are ignored. If there are not enough results to construct the approximate design surfaces,
LS-OPT will terminate with an appropriate error message.

9.11. Parallel processing

Runs can be executed simultaneously. The user has to specify how many processors are available.

Command file syntax:

solver concurrent jobs number_ of jobs

If a parallel solver is used, the number of concurrent jobs used for the solution will be number of jobs times
the number of cpu’s specified for the solver.

Example:

solver concurrent jobs 16

If the number of concurrent jobs is specified as 0, all the jobs will be run simultaneously. This can be used
to transfer all the jobs to a queuing system (see Section 9.12) at once.

9.12. Remote job scheduling

The solver jobs do not have to be executed on the same machine as where LS-OPT is running. There are
several ways of distributing the solver jobs. An example of remote job distribution is when the user is
running LS-OPT on a laptop or desktop computer but prefers to run multiple solver jobs in parallel on a
computer cluster.

There are five common scenarios that we try to address using various LS-OPT job scheduling options.
. runqueuer/wrapper option

a. You have a queueing system and you want to submit some or all LS-OPT solver jobs to that
queueing system.

b. You can allow remote solver jobs to initiate TCP/IP connections back to the machine where
LS-OPT runs.
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2. blackbox option

a. You have a queueing system and you want to submit some or all LS-OPT solver jobs to that
queueing system.

b. You prefer not to allow remote solver jobs to initiate TCP/IP connections back to the
machine where LS-OPT runs.

3. lstcvm option

a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you
would like to run all solver jobs on a single, dedicated cluster.

b. You can share a file system between LS-OPT and the cluster where the solver jobs are run.
4. lstcvm/runqueuer/wrapper option

a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you
would like to run all solver jobs on a single, dedicated cluster.

b. You prefer not to share a file system between LS-OPT and the cluster where the solver jobs
are run.

c. You do allow remote solver jobs on the dedicated cluster to connect via TCP/IP back to the
machine where LS-OPT is running.

5. 1lstcvm/blackbox option

a. You have a queueing system that you would like to use for job submission, but the machine
where you would like to run LS-OPT does not have a command line submit utility for the
queueing system.

b. There is a machine on your system where
i. You can install the 1 stcvm job proxy server;
il. You can submit jobs using a command line utility;

1ii.  You can share a file system with the machine where LS-OPT will run;

9.13. Using an external queuing or job scheduling system

9.13.1. Introduction

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF' or LoadLeveler?) to enable
running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each
remote node, extract the results on the remote directory and transfer the extracted results to the local
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. The
README . queue file should be consulted for the most up to date information about the queuing interface.

! Registered Trademark of Platform Computing Inc.
? Registered Trademark of International Business Machines Corporation
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Command file syntax:

Solver queue [queue_nhame]

Table 9-5: Queuing options

queuer name Description

1sf LSF

loadleveler LoadLeveler

pbs PBS’

nge NQE*

ngs NQS’

ags AQS

slurm SLURM

user User Defined

blackbox Black box

msccp MS Windows Compute
Cluster Server

honda dedicated queuer

9.13.2. Installation

To run LS-OPT with a queuing (load-sharing) facility the following binary files are provided in the
LSOPT EXE directory which un-tars (or unzips) from the distribution during installation of LS-OPT:

LSOPT EXE/wrapper
LSOPT EXE/rungqueuer

The runqueuer executes the command line for the purpose of queuing and must remain in the LS-OPT
environment (the same directory as the Isopt executable).

The following instructions should then be followed:

Installation for all remote machines running LS-DYNA

1. Create a directory on the remote machine for keeping all the executables including 1sdyna. Copy
the appropriate executable wrapper program to the new directory. e.g. if you are running LS-

? Portable Batch System