

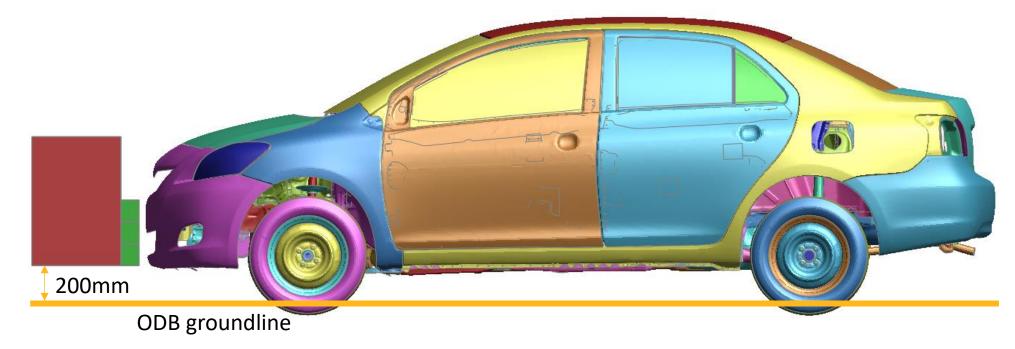
Powering Innovation That Drives Human Advancement

LS-DYNA中纯电动汽车电池刮底仿真 Simulation of BEV battery bottom-scraping in LS-DYNA

王应奇 2025.05.20

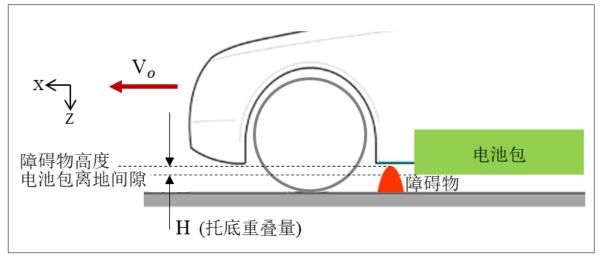
©2025 ANSYS, Inc.

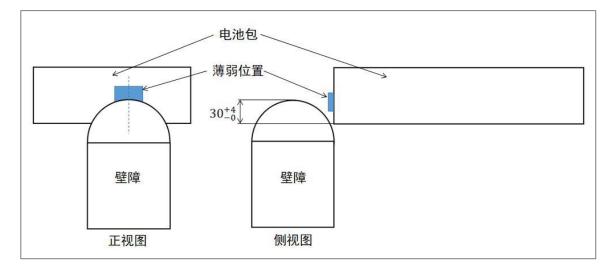
- Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping
- The Methods of achieving vehicles equilibrium
 - 1. Dynamic relaxation
 - 2. Switching deformable to rigid
 - 3. Replacing nodes after simulating vehicle equilibrium once
- Summary



- Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping
- The Methods of achieving vehicles equilibrium
 - 1. Dynamic relaxation
 - 2. Switching deformable to rigid
 - 3. Replacing nodes after simulating vehicle equilibrium once
- Summary

Background---High velocity crash simulation ignore equilibrium


- Currently, in the high velocity crash simulation model, the state of the suspension is not compressed. When positioning the height of the barrier, it needs to be based on the groundline.
- For FFB, ODB, MPDB and other cases, there is no load in Z-direction, and the crash time is approximately 100ms. From an engineering perspective, the above simplification of uncompressing is acceptable.



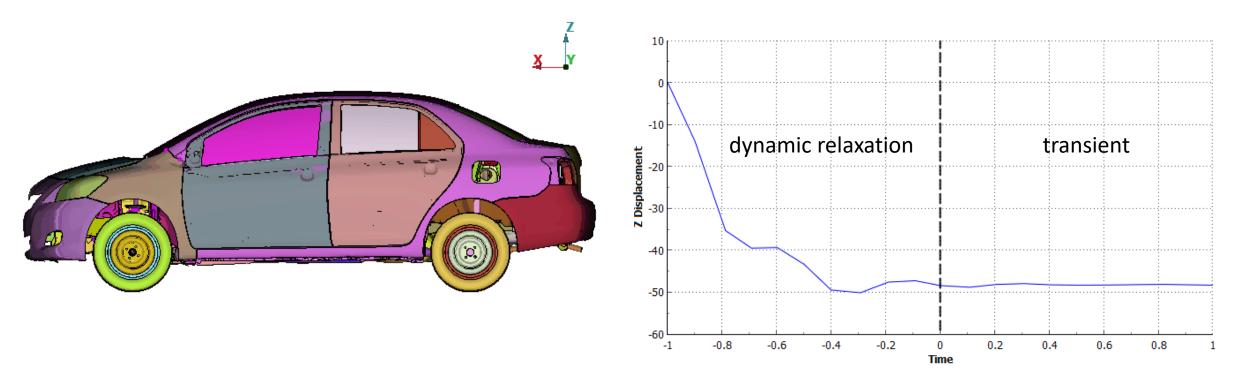
Background---Bottom scraping simulation requires equilibrium

- During the bottom scraping case, the vehicle is subjected to a load of Z-direction force. That the velocity decreases means that the time of the case increases. The simplification of the suspension for high velocity crash is no longer applicable.
- For the simulation of the bottom scraping, the vehicle needs to be in equilibrium, and the suspension model should contain information such as compression deflection and force.

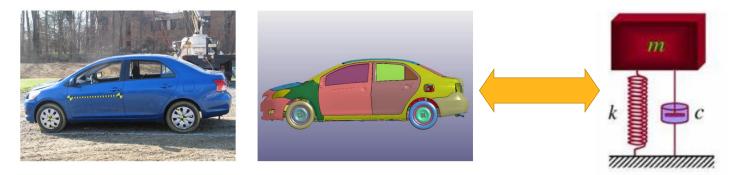
Bottom scraping

Schematic diagram of spherical barrier positioning

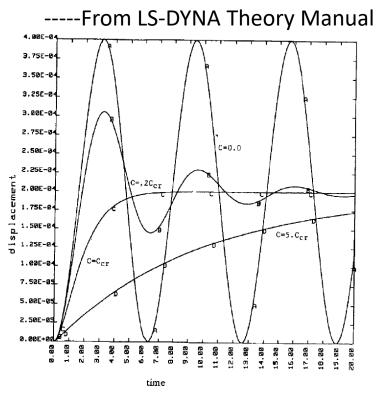
• Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping


• The Methods of achieving vehicles equilibrium

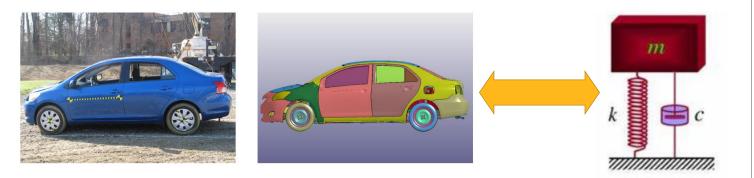
- 1. Dynamic relaxation
- 2. Switching deformable to rigid
- 3. Replacing nodes after simulating vehicle equilibrium once
- Summary


The Methods of achieving vehicles equilibrium---Dynamic relaxation method

- Before conducting transient analysis, add dynamic relaxation to let the vehicle reach the equilibrium position first.
- The dynamic relaxation phase requires 0.5 to 1.0 second and needs much computing resources. The detailed reasons are on the following page.


The Methods of achieving vehicles equilibrium---Dynamic relaxation method

• Simplify the vehicle to a single-DOF vibration system: $m\ddot{d} + c\dot{d} + kd = mg$


• Then, The vibration period:
$$T=2\pi\sqrt{m/k}$$
, $C_{cr}=2\sqrt{mk}$

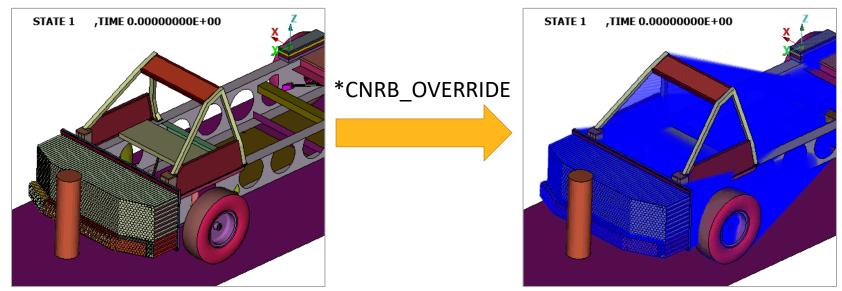
- When the actual damping coefficient c takes different values: c = 0 Undamped free vibration. $c > C_{cr}$ Overdamping, no vibration, equilibrium after multiple cycles. $c < C_{cr}$ Underdamped, vibration and attenuation occur simultaneously, equilibrium after multiple cycles. $c = C_{cr}$ Critical damping, the system will return to equilibrium after approximately one vibration period.
- Even if it is set to critical damping, it still takes at least one vibration period to reach equilibrium.

Figure 34.1. Displacement versus time curves with a variety of damping coefficients applied to a one degree-of-freedom oscillator.

The Methods of achieving vehicles equilibrium---Dynamic relaxation method

- Take the 2010 Toyota Yaris as an example. According to the model from NHTSA:
- The total stiffness of the suspension $k \approx 72 \text{ N/mm}$,
- The total mass is 1078 kg. Assuming the sprung mass m ≈ 1000 kg,
- Then the frequency f = 1.35 Hz, the vibration period T = 0.74 s.
- At least 0.74 s is needed to reach equilibrium.

・频率范围: 1~2 Hz	
 ・这是车体垂直振动的固有頻 架弹簧和减震器共同决定。 	页率,由 悬
•设计目标是与人类步行频率 接近,以提升舒适性,同时 敏感的 **4~8 Hz** 区间(- 车)。	寸避开人体
(+) 开启新对话	¥
给 DeepSeek 发送消息	


• Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping

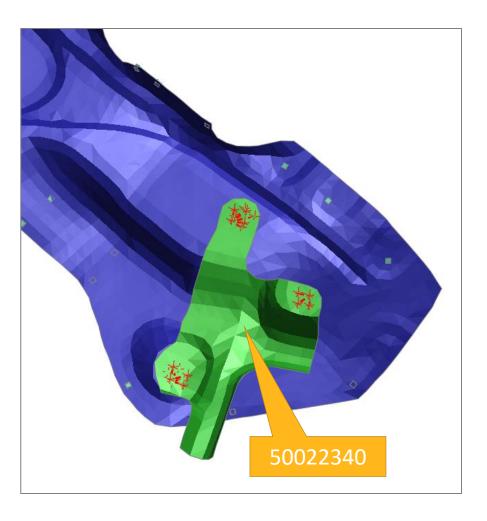
• The Methods of achieving vehicles equilibrium

- 1. Dynamic relaxation
- 2. Switching deformable to rigid
- 3. Replacing nodes after simulating vehicle equilibrium once
- Summary

- In LS-DYNA, two keywords are provided for the switching between deformable and rigid,
 - 1. *CONSTRAINED_NODAL_RIGID_BODY_OVERRIDE. Based on the input to generate a *CONSTRAINED_NODAL_RIGID_BODY to achieve the rigidity effect. However, Element Processing cannot be skipped. The saved computing resources are limited, and it is not suitable for use at this case.

2. *DEFORMABLE_TO_RIGID_AUTOMATIC. It will Skip Element Processing to save computing resources. Please pay attention to the instruction on the following page when using this keyword.

- When using *DEFORMABLE_TO_RIGID_AUTOMATIC, the following situations need to be pay attention. Improper
 usage may lead to errors.
 - 1. The deformable body has connection with *CONSTRAINED_NODAL_RIGID_BODY.
 - 2. When the nodes of the deformable body are called by *CONSTRAINED_EXTRA_NODES.
 - 3. The deformable body is simultaneously connected to more than one rigid bodies.
 - 4. *CONSTRAINED_RIGID_BODYS
 - 5. *CONSTRAINED_JOINT_TYPE
- The switching between deformable and rigid is not easy to use for the whole vehicle model.

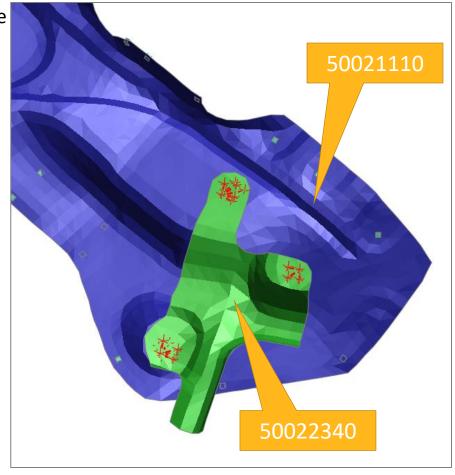


 When switching a deformable to rigid body and if the deformable body is connected to *CONSTRAINED_NODAL_RIGID_BODY,

paired	relsw	entno	time3	time2	time1	code	swset	\$: -
(0	0	0.0	0.0	0.0	0	1	
	offset	r2d	d2r	dtmax	rwf	ncsf	nrbf	:
	0.0	0	1	0.0	0	0	0	
					ptype	lrb	pid	S:
					PART	0	022340	50

• the *CONSTRAINED_NODAL_RIGID_BODY connected to it will be merged.

*** Automatic material switch at time 7.65000E-07
Switch case 1
Nodal rigid body ID: 50010374 is merged with part ID: 50022340
Nodal rigid body ID: 50010372 is merged with part ID: 50022340
Nodal rigid body ID: 50010373 is merged with part ID: 50022340

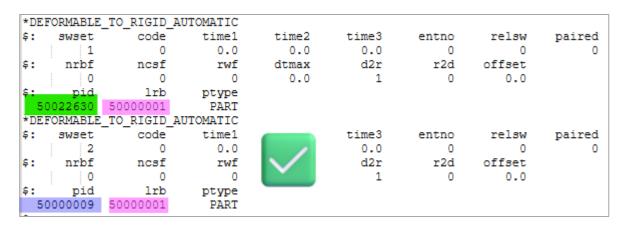


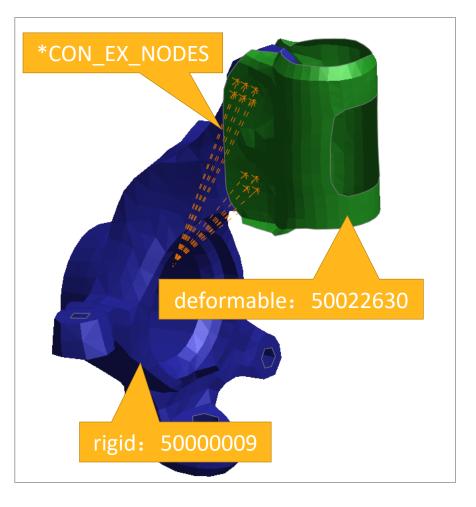
 When switching two deformable bodies to rigid bodies and if they shared some same *CONSTRAINED_NODAL_RIGID_BODY, this would lead an error.

*DEI	FORMABLE	TO_RIGID_A	UTOMATIC					
\$:	swset	code	time1	time2	time3	entno	relsw	paired
	1	0	0.0	0.0	0.0	0	0	0
\$:	nrbf	ncsf	rwf	dtmax	d2r	r2d	offset	
	0	0	0	0.0	1	0	0.0	
<u> </u>	pid	lrb	ptype					
- 50	0022340	0	PART					
*DEI	FORMABLE	TO RIGID A	UTOMATIC					
\$:	swset	code	time1		time3	entno	relsw	paired
	2	0	0.0	\sim	0.0	0	0	0
\$:	nrbf	ncsf	rwf		d2r	r2d	offset	
	0	0	0	0.0	1	0	0.0	
\$:	pid	lrb	ptype					
50	0021110	0	PART					

• Solution: Assign a same lead rigid body.

	swset	code	time1	time2	time3	entno	relsw	paired
•	awaeu					encilo	TETPM	parreu
	1	0	0.0	0.0	0.0	0	0	0
	nrbf	ncsf	rwf	dtmax	d2r	r2d	offset	
	0	0	0	0.0	1	0	0.0	
	pid	lrb	ptype					
- 50	0022340	50000001	PART					
DEI	FORMABLE	TO_RIGID_A	UTOMATIC					
	swset	code	time1	time2	time3	entno	relsw	paired
	2	0	0.0	_	0.0	0	0	0
	nrbf	ncsf	rwf		d2r	r2d	offset	
	0	0	0		1	0	0.0	
	pid	lrb	ptype	\sim				
	0021110	50000001	PART					

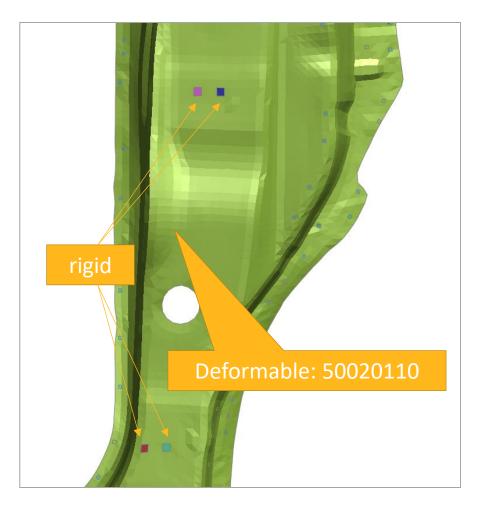




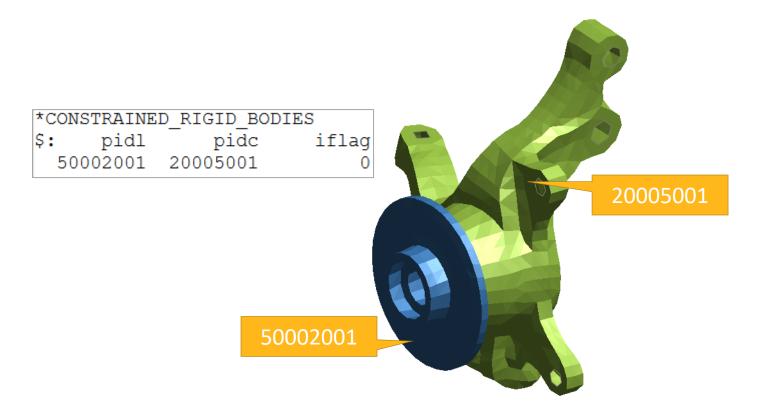
 When the nodes of the deformable body are called by *CONSTRAINED_EXTRA_NODES this would lead an error.

*DE	FORMABLE_T	O_RIGID_A	JTOMATIC					
\$: \$: \$: 5	swset 1 nrbf 0 pid 0022630	code 0 ncsf 0 1rb 0	time1 0.0 rwf 0 ptype PART	Х	time3 0.0 d2r 1	entno 0 r2d 0	relsw 0 offset 0.0	paired 0

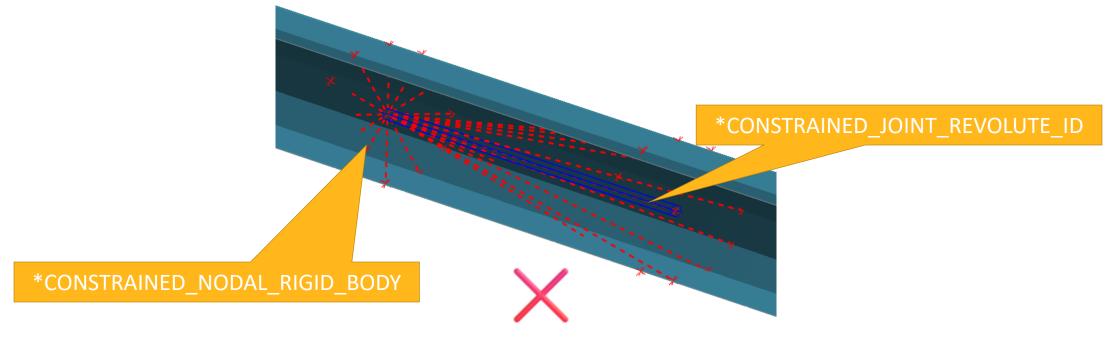
• Solution: Assign a same lead rigid body.



 When a deformable is connected to multiple rigid bodies, the rigid bodies sharing the same node with the deformable will be automatically merged. There is just warning and no error.


*DEI	FORMABLE_1	CO_RIGID_A	JTOMATIC					
\$:	swset	code	time1	time2	time3	entno	relsw	paired
	1	0	0.0	0.0	0.0	0	0	0
\$:	nrbf	ncsf	rwf	dtmax	d2r	r2d	offset	
	0	0	0	0.0	1	0	0.0	
ş:	pid	lrb	ptype					
5(0020110	0	PART					

- *** Automatic material switch at time 7.65000E-07 Switch case 1
- *** Warning 30308 (INI+308)
 Due to common shared node(s) it is necessary to merge
 rigid part ID: 50000013 with part ID: 50020110
- *** Warning 30308 (INI+308)
 Due to common shared node(s) it is necessary to merge
 rigid part ID: 50000011 with part ID: 50020110
- *** Warning 30308 (INI+308)
 Due to common shared node(s) it is necessary to merge
 rigid part ID: 50000012 with part ID: 50020110
- *** Warning 30308 (INI+308)
 Due to common shared node(s) it is necessary to merge
 rigid part ID: 50000010 with part ID: 50020110



• *CONSTRAINED_RIGID_BODYS. There is no error.

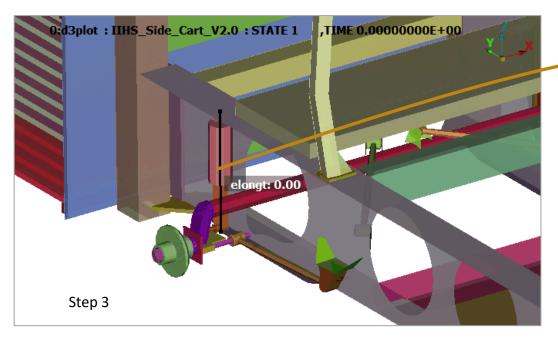
- The nodes of Joint are part of *CONSTRAINED_NODAL_RIGID_BODY. After the deformable body switch to a rigid body, the nodes disappear. It will cause an error.
- The Part connected by Joint should be used with caution for the switching between deformable and rigid bodies. If all the rigid body connected by Joint is merged into the same Part. It will cause an error.

- When using *DEFORMABLE_TO_RIGID_AUTOMATIC, the following situations need to be pay attention. Improper
 usage may lead to errors.
 - 1. The deformable body has connection with *CONSTRAINED_NODAL_RIGID_BODY.
 - 2. When the nodes of the deformable body are called by *CONSTRAINED_EXTRA_NODES.
 - 3. The deformable body is simultaneously connected to more than one rigid bodies.
 - 4. *CONSTRAINED_RIGID_BODYS
 - 5. *CONSTRAINED_JOINT_TYPE
- The switching between deformable and rigid is not easy to use for the whole vehicle model.

• Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping

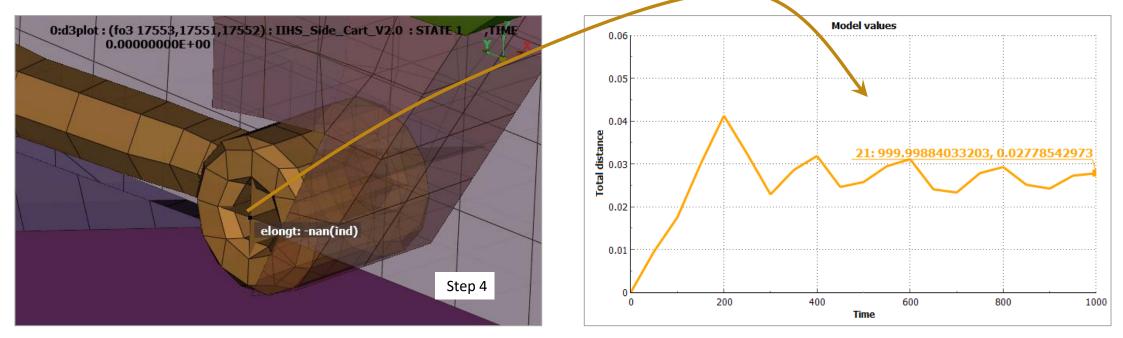
• The Methods of achieving vehicles equilibrium

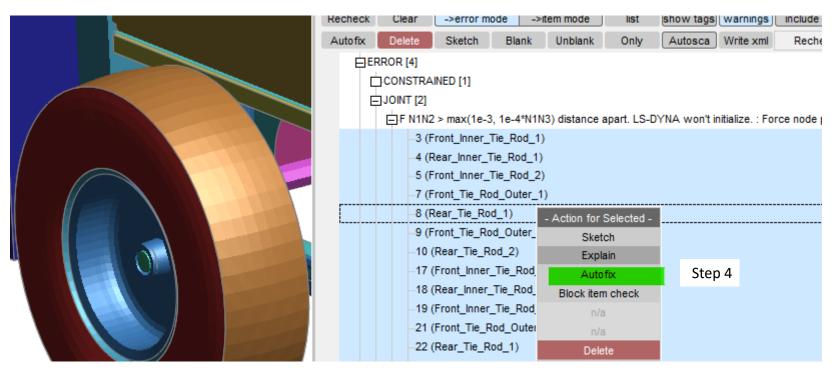
- 1. Dynamic relaxation
- 2. Switching deformable to rigid
- 3. Replacing nodes after simulating vehicle equilibrium once
- Summary

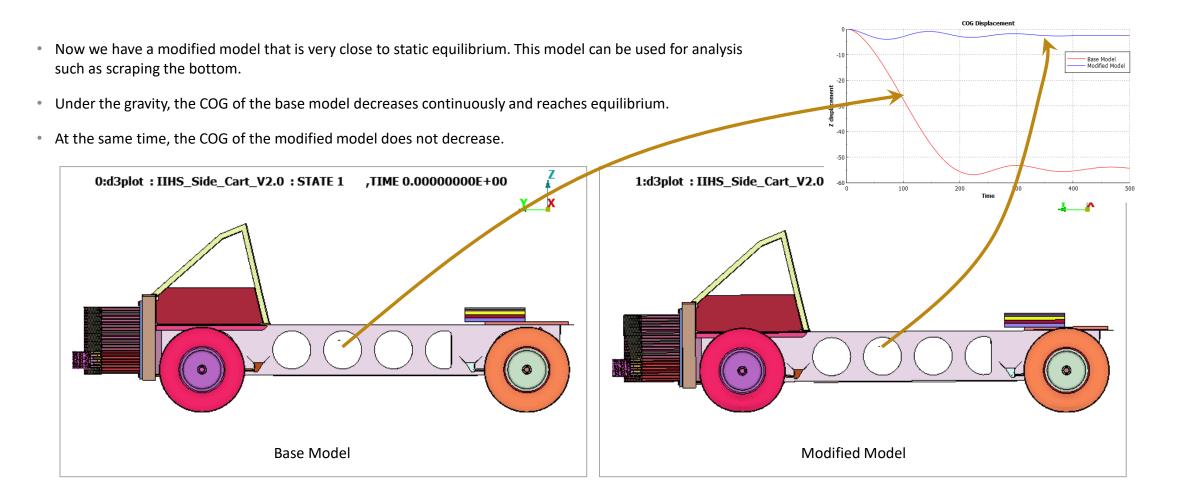


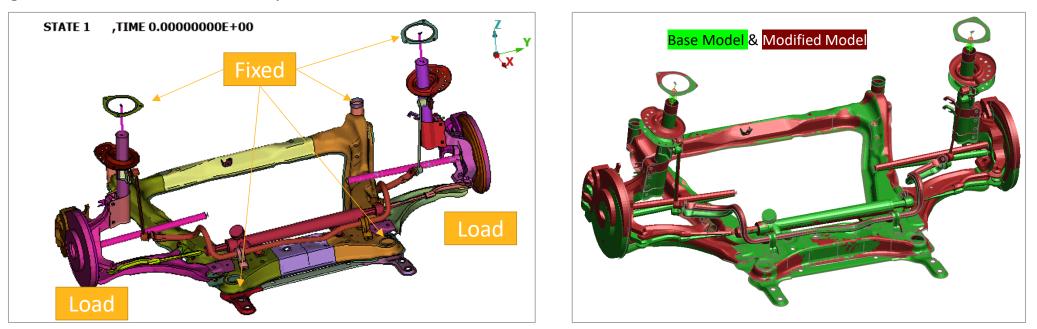
Step 1, Let the whole vehicle model reaches equilibrium after simulation more than 1s;
 Step 2. Exporting the *NODE from the last time step in the result. Replacing the *NODE of the original model with the one just exported from the result;
 Step 3. Measuring the suspension compression and writing it to 'offset' in the *ELEMENT_DISCRETE;
 Step 4, There are some Joint those nodes do not fully coincide. Using OASYS Primer to auto fix it.

	tuon r				tuope	
0:d3plot : IIHS_Side_Cart_V2.0 : STATE 1 ,TIME 0.0000000E+00	*NODE				*NODE	
	\$: nid	CX	cy	CZ		///////
<u>x</u>	1	-0.480798036	-3366.27368	298.158234	1 -5.0201416e-01 -3.3640093e+03 3.430	8719e+02
	2	-25.2856846		298.158691	2 -2.5306900 000 0 00000 000 3.430	8719e+02
	3	-50.0907822	rom Result	298.159149	3 -5.01120 Original model 3.430	8719e+02
	4	-74.8958817	-3366.2/41/	298.159607	u	8719e+02
	5	-99.7007828				8719e+02
	6	-124.505				8719e+02
	7	-149.31	-3360.27400	298.10098		8719e+02
	, ,	-174.1	-3366.2749	298.161438		8719e+02
	ő					
	9	-198.9	-3366.27515	298.161896		8719e+02
	10	-223	-3366.27515	298.162354		8719e+02
	11	-248.5	-3366.27539	298.162811		8719e+02
	12	-273.3	-3366.27563	298.163269		8719e+02
	13	-298.1	-3366.27588	298.163727	13 -2.9816199e+02 -3.3640093e+03 3.430	8719e+02
	14	-322.9	-3366.27588	298.164185	14 -3.2296701e+02 -3.3640093e+03 3.430	8719e+02
	15	-347.750793	-3366.27612	298.164642	15 -3.4777200e+02 -3.3640093e+03 3.430	8719e+02
	16	-372.555786	-3366.27637	298.165131	16 -3.7257700e+02 -3.3640093e+03 3.430	8719e+02
	17		-3366.27661	298.162964	17 -3.9738199e+02 -3.3640093e+03 3.430	8459e+02
Step1		Step2 60565	-3393.43604	298.344025		8719e+02
Step1	19	-397.360382	-3420.59521	298.522491		8719e+02
	20	-397.360199	-3447.75366	298.698364		8459e+02
	20	270 55506	2447 75266	200.000004		9710-102


Step 1, Let the whole vehicle model reaches equilibrium after simulation more than 1s;
 Step 2. Exporting the *NODE from the last time step in the result. Replacing the *NODE of the original model with the one just exported from the result;
 Step 3. Measuring the suspension compression and writing it to 'offset' in the *ELEMENT_DISCRETE;
 Step 4, There are some Joint those nodes do not fully coincide. Using OASYS Primer to auto fix it.


*EI	LEMENT_D	ISCRETE						
\$:	label	pid	n1	n2	vid	3	pf	offset
	80862	73	36011	36050	0	0.0	0	0.0
	80863	77	36218	36257	0	0.0	0	0.0
	80864	82	36218	36257	0	0.0	0	-54.55
	80865	81	36011	36050	0	0.0	0	-39.06
	80866	120	73238	73277	0	0.0	0	0.0
	80867	124	73445	73484	0	0.0	0	0.0
	80868	128	73445	73484	0	0.0	0	-54.55
	80869	127	73238	73277	0	0.0	0	-39.06


Step 1, Let the whole vehicle model reaches equilibrium after simulation more than 1s;
 Step 2. Exporting the *NODE from the last time step in the result. Replacing the *NODE of the original model with the one just exported from the result;
 Step 3. Measuring the suspension compression and writing it to 'offset' in the *ELEMENT_DISCRETE;
 Step 4, There are some Joint those nodes do not fully coincide. Using OASYS Primer to auto fix it.


Step 1, Let the whole vehicle model reaches equilibrium after simulation more than 1s;
 Step 2. Exporting the *NODE from the last time step in the result. Replacing the *NODE of the original model with the one just exported from the result;
 Step 3. Measuring the suspension compression and writing it to 'offset' in the *ELEMENT_DISCRETE;
 Step 4, There are some Joint those nodes do not fully coincide. Using OASYS Primer to auto fix it.

- There are many include files of the whole vehicle, and replacing all nodes is very complicated. A simpler way: Only replace the front and rear suspension include files, and the tires need to be transformed. No other files need to be changed.
- How to do: Applying the displacement at the position of knuckle, along the direction of the spring. The packaging Engineer is
 required to give the ground line under the scraping test condition. We can calculate how much displacement to apply based on
 the ground line. The rest of the step is the same as before.

Model based on the public model nissan-rogue downloaded from https://www.ccsa.gmu.edu/models/2020-nissan-rogue/

- Background---The different requirements for vehicle equilibrium between high velocity crash and bottom scraping
- The Methods of achieving vehicles equilibrium
 - 1. Dynamic relaxation
 - 2. Switching deformable to rigid
 - 3. Replacing nodes after simulating vehicle equilibrium once

Summary

- The method of replacing node of chassis include file is recommended considering simultaneously computing resources and workload of engineer.

