Ansys

Powering Innovation That Drives Human Advancement

Ansys Forming – Accurate, Scalable, Process-Driven GUI for Metal Forming Simulation

Xinhai Zhu

©2025 ANSYS, Inc. / Proprietary. Do Not Share.

Agenda

- Introduction of Ansys Forming
 - History review
 - Ansys Forming GUI
- Typical applications
 - Multi-step forming
 - Clamping
 - TWB simulation
 - Springback compensation
 - Trimming curve development
 - One step method

- Key functions
 - Solid element in stamping simulation
 - Mesh check/repair
 - Mesh regeneration
 - Formability Index
 - 3D drawbead generation of bead force prediction
 - Non-linear contact
 - Variable friction
 - New universal material model
 - Reconfigurable settings
- Exciting future

Introduction

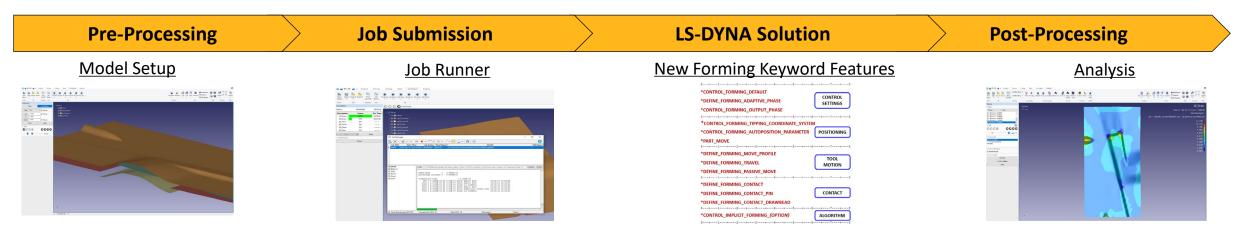
©2025 ANSYS, Inc. / Proprietary. Do Not Share.

Background

- LSDYNA has long been used in stamping simulation
 - LSDYNA was one of the first commercial FEA software for stamping simulations
 - Has built a strong reputation for its accuracy, especially in springback prediction
 - Used to rely on third-party GUI for stamping simulation.
- Ansys Forming is a dedicated package to stamping simulation
 - Integrated GUI Pre, solver and post processing
 - A Designer's tool
 - Can simulate the entire stamping process within a single platform
 - Streamlined Formability/Trimline development/Springback Compensation functions.

Design Objectives

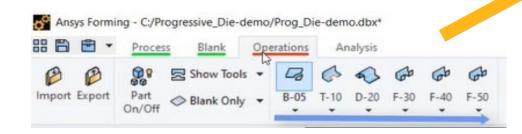
Easy to use - Friendly user interface for intuitive use.

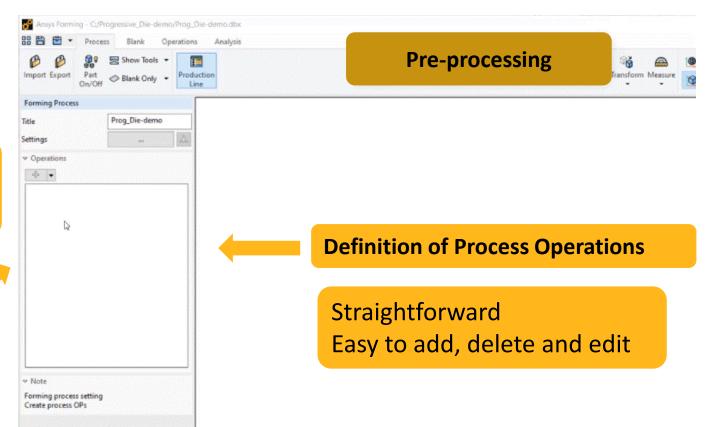

Efficient - Smart adaptivity, contact auto move, new material algorithm, scalability through MPP, in- core technology.

Robust - automatic normal check for contact, optimized setting, consistent solution.

Fully Integrated Platform

- Ansys Forming provides a unique platform which has a seamless fully integrated GUI with pre-post processing and uses LS-DYNA as a solver.
 - Easy to setup multi-stage forming simulations
 - Customizable template-based method allows user to easily define different forming processes
 - A job-submitter allows user to run the job easily
 - User can seamlessly evaluate simulation results when the job is running

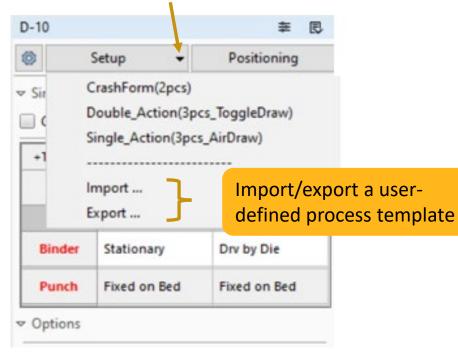



Process-based Workflow

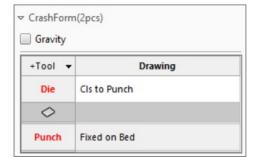
During process design/verification, engineers must perform the simulations of drawing and secondary operations, such as trimming, flanging and restriking, as well as springback.

Process-based workflow is the key to analyze and optimize all the operations of a stamping process.

Straightforward Operation Definition Easy to use: ADD, DELETE & EDIT



Preset/User-Defined Process Templates


Preset Process Templates

Convenient to set up a typical process Guidance for new forming users Easy to edit for a complicated process

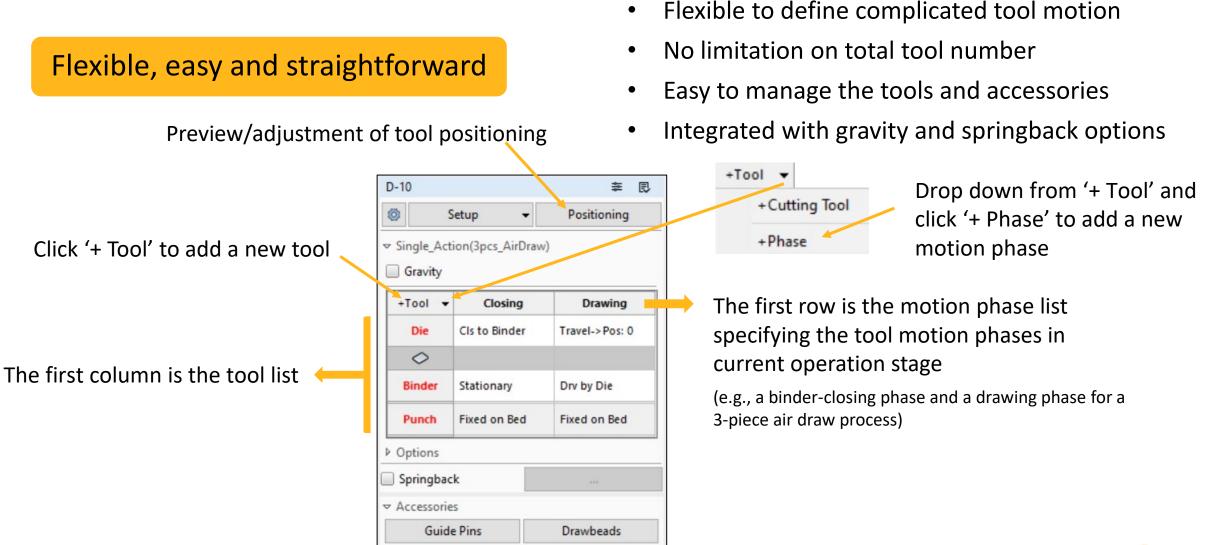
Drop down for a preset or user-defined process template

Draw operation

Single_Act	ion(3pcs_AirDrav	1)
Gravity		
+Tool 🔻	Closing	Drawing
Die	Cls to Binder	Travel->Pos: 0
\diamond		
Binder	Stationary	Drv by Die
Punch	Fixed on Bed	Fixed on Bed

+Tool 🔻	Closing	Forming
Pad	CIs to Post	Stationary
Flg1	Stationary	Travel->Pos: 0
\diamond		
Post	Fixed on Bed	Fixed on Bed

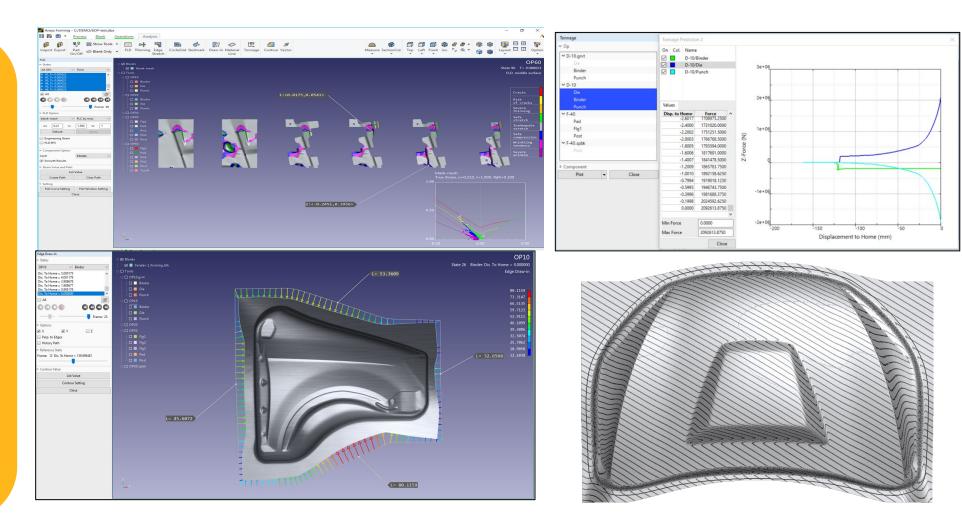
Flanging/Restrike


+Tool 🔻	Closing	Drawing
Punch	Stationary	Travel->Pos: 0
Binder	Cls to Die	Stationary
\diamond		
Die	Fixed on Bed	Fixed on Bed

FormTrim

+Tool 🔻	Closing	Forming
Pad	CIs to Post	Stationary
Fig1	Stationary	Travel->Pos: 0
*CutTool1	Drv by Flg1	Drv by Flg1
\diamond		
Post	Fixed on Bed	Fixed on Bed

Innovative Tabular Tooling Setup



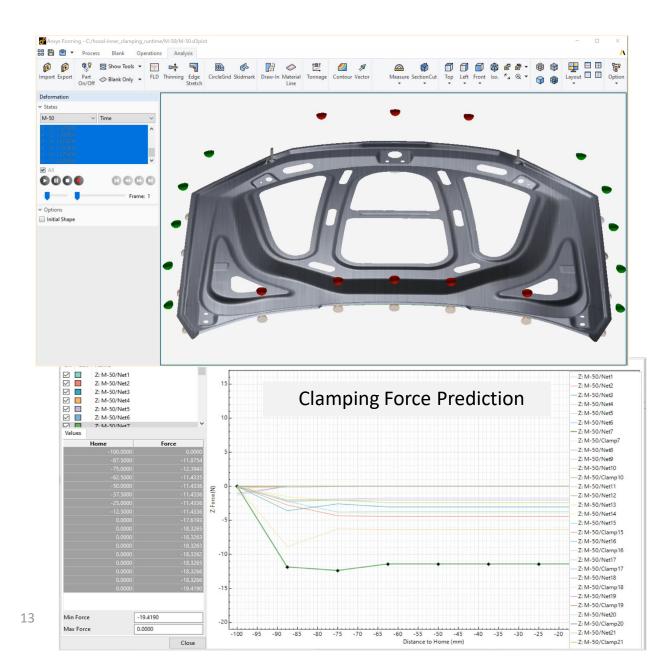
Provide all the necessary post processing functions

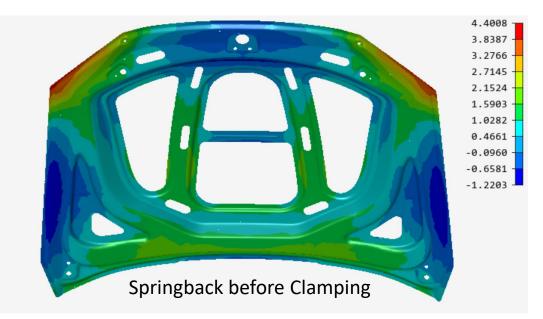
Intuitive GUI

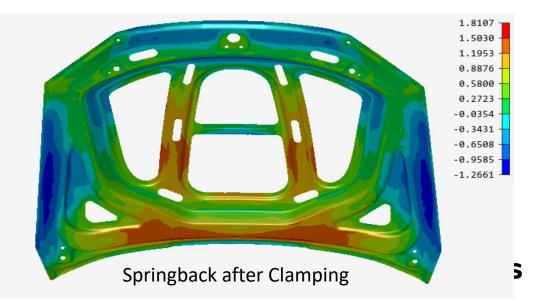
- Special forming modules
- Integrated postprocessing of multistage jobs
- Easy multiple-window management
- Up-to-date graphic rendering
- High software stability

Typical Applications

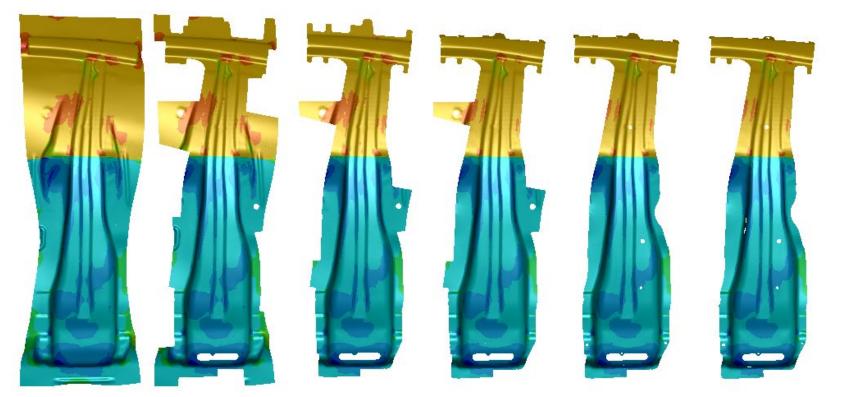
©2025 ANSYS, Inc. / Proprietary. Do Not Share.


Traditional stamping simulation


- Simulation of entire stamping process
 - blanking
 - Gravity loading
 - Draw
 - Trimming
 - Flanging/restriking
 - Spring back



Clamping Simulation



Tailor Welded blank

• 2025R2 enables the creation of tailored blanks with multiple weld lines

General	Tip	Operations		
Plan				
⊕ ▼				
D-10	Draw	/Stretch	~	-
T-20	Trim	Pierce	~	-
T-30	Trim	Trim/Pierce		
F-40	Form	Trim/Flange/Restrike	~	-
T-50	Trim	/Pierce	~	-
T-60	Trim/	Pierce	~	-

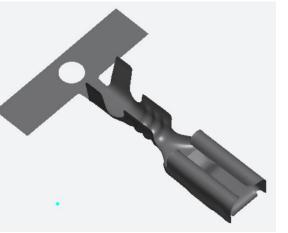
Powering Innovation That Drives Human Advancement

Progressive Die process

• The process involves 20 stations

Process

Part


On/Off

Sho

O Blan

Displa

Operations	Analysis				
pols 👻 🗖	6 6 6 6 6 6 6 0D-70- 4	D-110▼ <> D-140▼ <> L)-1/0-		
	OP		Job		
Runner					
Status:	COMPLETED	01:30:19	A		
Description	Status	Time	Runner		
B-05			D-80		
blanking	100%	00:00:08	draw	100%	00:01
T-10			D-90	100%	00:00
trim	100%	00:00:04	draw D-100	100 %	00:00
T-20			draw	100%	00:22
trim	100%	00:00:06	D-110		
D-30			draw	100%	00:01
draw	100%	00:02:32	D-120		
D-40			draw	100%	00:07
draw	100%	00:07:12	D-130		
T-50			draw	100%	00:23
trim	100%	00:00:06	D-140		
T-60			draw	100%	00:05
trim	100%	00:00:04	D-150	10001	
D-70			draw	100%	00:03
draw	100%	00:00:26	D-160 draw	100%	00:07
D-80			D-170	100.78	00:07
draw	100%	00:01:37	draw	100%	00:02
D-90			D-180		00101
draw	100%	00:00:43	draw	100%	00:02
D-100			✓ Settings		
draw	100%	00:22:29	CPU = Memory =	(MB)	Default
D-110			v	(- Crowne

15

Springback Compensation

- The springback compensation provides a workflow to correct the springback deviation
 - Iterative method
 - Fully automatic
- Springback and draw forming can have different coordinate system

Process Blank Operation Process Blank Operation Part Part Part On/Off Blank Only	ions Advance Analysis Production Line	import Export	Image: Part On/Off Image: Show To Part On/Off	Casinghash Runner	
File Display	Stamping	File	Display	Optimization Job	
Process]	Springback Co	mpensation		
General Tip Operations Advance	e	Max. of Iteratio	n:	2	
∀ Types		Tolerance:		0.5	
ONormal Forming Simulation		Scale Factor:		0.75	
Trim Line Development		Compensation	Side:	Lower	~
Springback Compensation		Target Geometr		M-40/scpblank0.inc	
O Part Unfolding		larget Geometi	у.	Wi-Hoyseppilatiko.itte	
◯ Stochastic Simulation		A	Apply	View Result	

Maximum number of iterations Maximum difference between target and final part geometry Scaling of the compensation (0-1). Scaling equals 1 will compensate faster

Point to the side of the tools to be

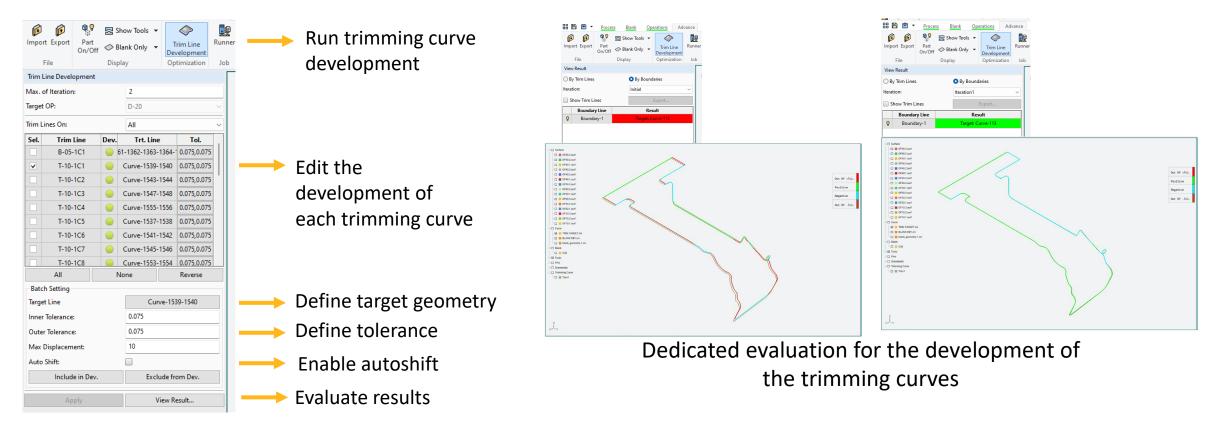
Springback Compensation

Postprocessing

- Result display of springback compensation (Blank deviation) 🖸 🗖 Mesh ☑ ☑ Blanks
 ☑ ☑ M-30 M-30 Initial State 2 Clamp9: Dis. To Home = 0.0 0.9000 0.8000 0.6000 0.6000 0.4000 0.3000 0.3000 0.1000 -0.2000 -0.2000 -0.2000 -0.4000 -0.5000 -0.5000 -0.5000 -0.5000 -0.9000 -0.9000 Iteration1 lter01_M-30 State 2 Clamp9: Dis. To Home = 0.0 0.9000 Iteration2 0.8000 0.7000 0.5000 0.4000 © ⊂ Alcahr © ⊽ Alcahr © ⊽ Rantas 0.3000 0.2000 0.1000 State 2 Clamp5; Dis, To Home = 0,1 0.1000 -0.1000 -0.2000 -0.3000 -0.3000 -0.5000 ×, Š -0.5000 -0.5000 -0.8000 -0.9000 xy

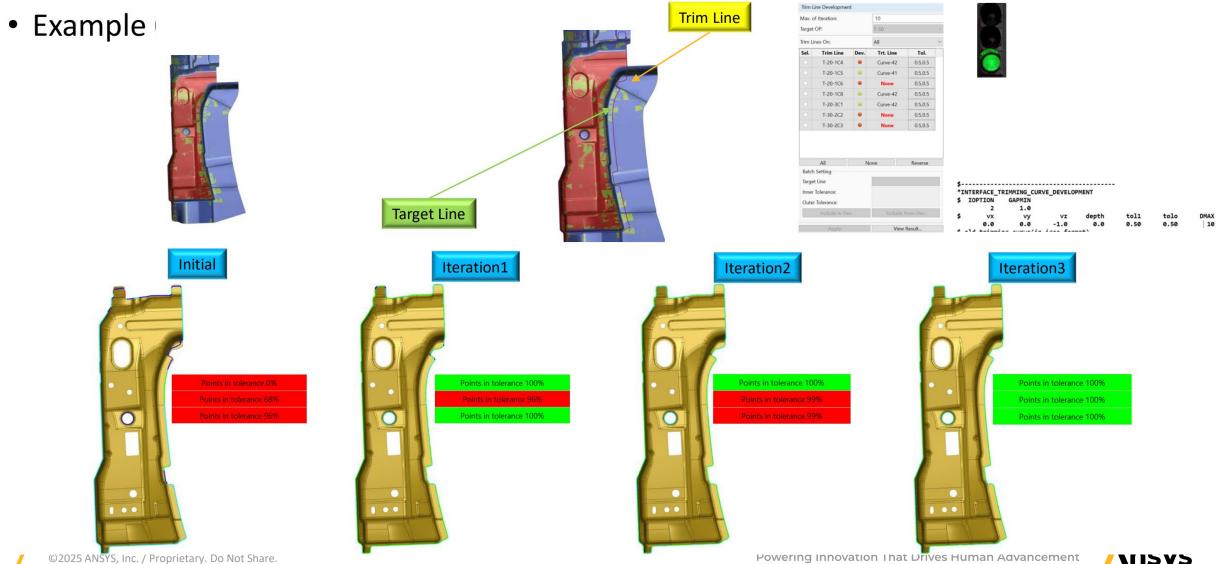
Iter02_M-30

1.000

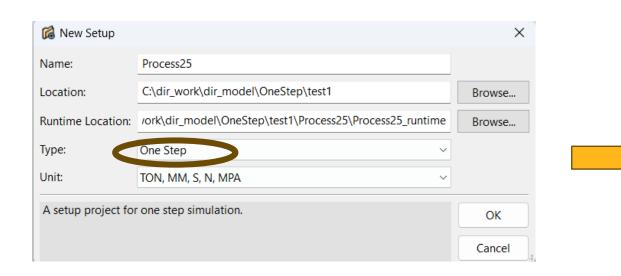

0.9900 0.8900 0.7900 0.5900 0.4900 0.4900 0.2900

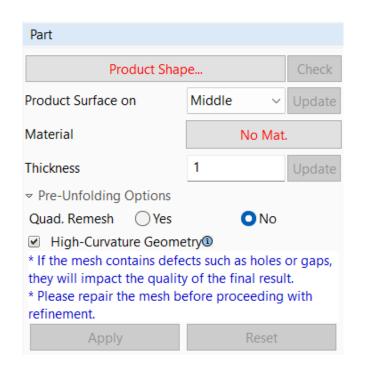
Ansys

Springback Deviation Norm


Trimming Curve Development

- The user interface facilitates setting up the development of trimming curves
- For every iteration, the user can evaluate the resulting part geometry to the target boundary

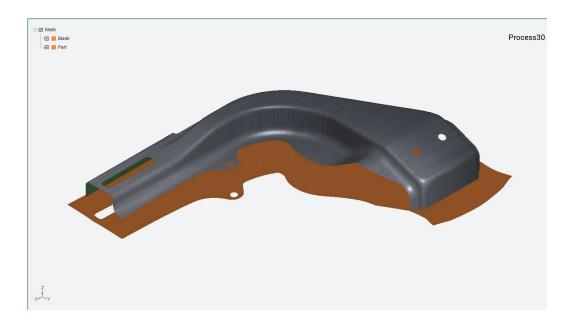

Trimming Curve Development - 2

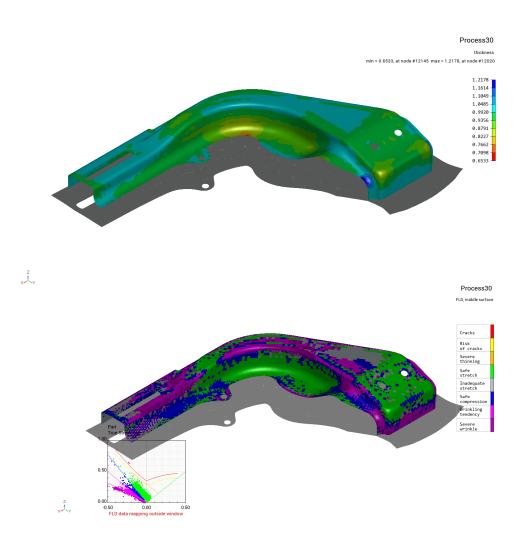


One Step Method

• One step method has been available in the solver

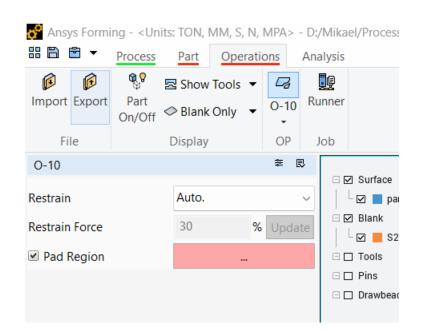
- Several new important functions have been added
- Friendly use interface will be in the next release

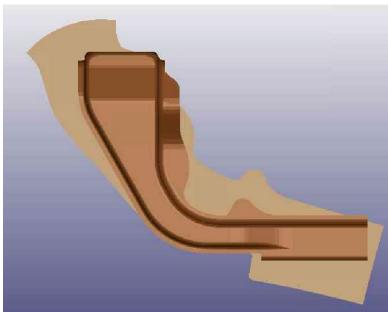


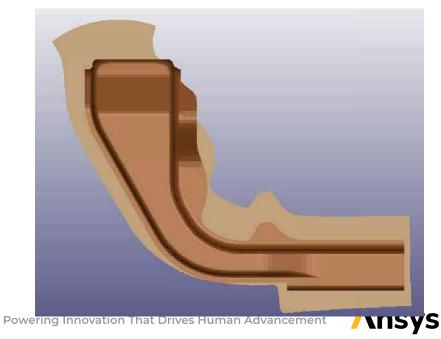


One Step Method - 2

- Auto positioning of the unfolded sheet
- Post processing: FLD, thinning...

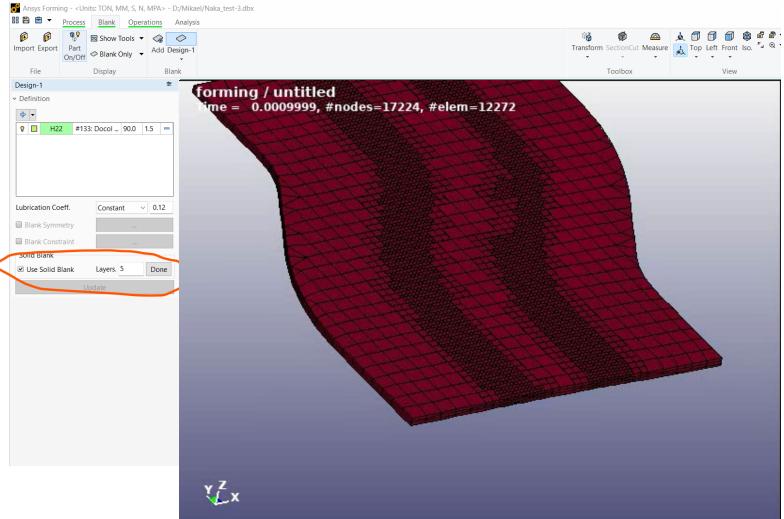



One Step Method - 3


Pad definition

- Material in the pad region experience small deformation
- Pad will prevent blank from sliding over the plane

🔗 Ansys Form	ing - <units: m<="" th="" ton,=""><th>M, S, N, MPA></th><th>- D:/</th><th>Mikael/Process3/</th></units:>	M, S, N, MPA>	- D:/	Mikael/Process3/
# 🛱 🖻 🔻	Process Part	Operations	Ana	lysis
Import Export	Image: System Image: System Part On/Off Image: System	0.10		nner
File	Display	OP	J	ob
 Pick Element ✓ Pick Options Pick by ID: □ Trace ✓ Spread 	Window Polygo	n Freehand	t	 Surface Blank Tools Pins Drawbeads
All		Displayed		
Undo	Redo	Clear		
	Close			



Key Functions

©2025 ANSYS, Inc. / Proprietary. Do Not Share.

Solid Element

- Use only need to input the number of layers to use solid element in the preprocessing
- Some important functions in using solid elements
 - Enable mesh refinement
 - Enable contact auto normal check to avoid mesh check for the rigid tools
 - Enable contact auto move
 - All the post-processing functions are enabled

Mesh Check/Repair

Defects that arise from CAD models or the mesh generation process can significantly impact the accuracy and efficiency of simulations: Mesh Check

Sel. ID

1

2

3

4

5

6

7

8

9

10

11

12

Part: 1_op10_die

Q Input boundary id(e.g. 1-3, 5, 7

Gap

Gap

Gap

Gap

Gap

Hole

Gap

Hole

Hole

Gap

Repair All

Gap Repair merges nodes without

* Hole Repair retains all edges with

All

Element Operation Select

Batch Setting Boundary Type

Inner Boundary

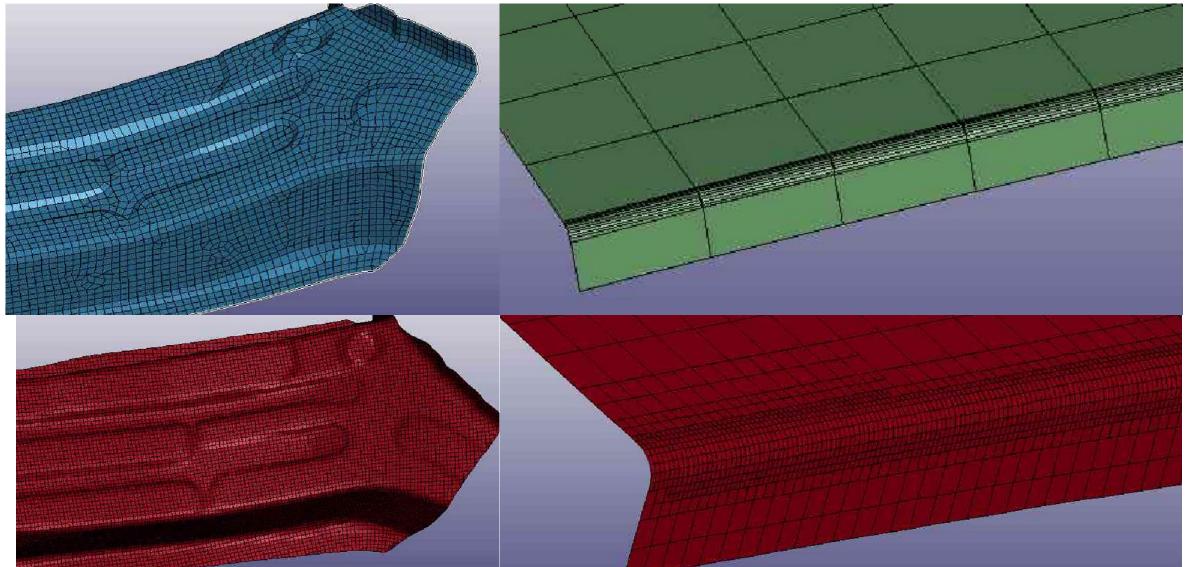
Inner Boundary

Bounda

None

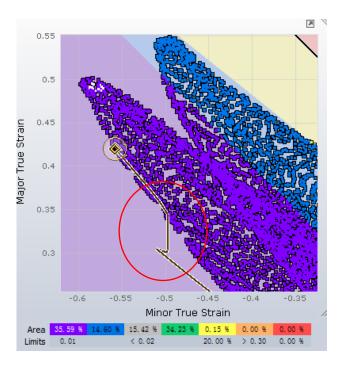
Close

- Holes/Gaps
- Intersecting/Overlapping/Folding elements
- o Tiny elements with poor quality
- Addressing these issues is critical to ensure the success of simulations and prevent convergence difficulties or simulation failures
- Ansys Forming's Mesh Check is designed to identify and rectify these defects

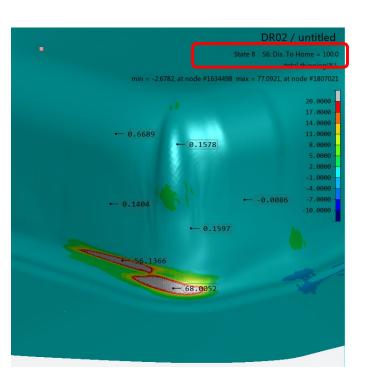

Detect Boundary

- o *<u>Removes</u>* folding/tiny elements
- o <u>Detects</u> all boundaries
- o *<u>Classifies</u>* detected boundaries
 - Inner Boundary: Retained to represent the true geometry
 - Hole: To be repaired by the Hole-Repair method
 - Gap: To be repaired by the Gap-Repair method
 - Boundary Type can be changed as needed

	耕	
1 Detect Bour	ndary	
	lter 👻	□ Blank
	^	
ry Type	A	Bed Tool
	•	Drawbeads
	•	
	•	
× ·		
·		
× ·	•	
· · ·	•	
V .	۲	
~ >		
× .	•	
	 	
Reverse		
Reverse		
ner Boundary 🗸 🗸	Set	
Table streat stats		
Delete		
Repair Selected		
Discard All		
constrained edges.		
out node merging.		



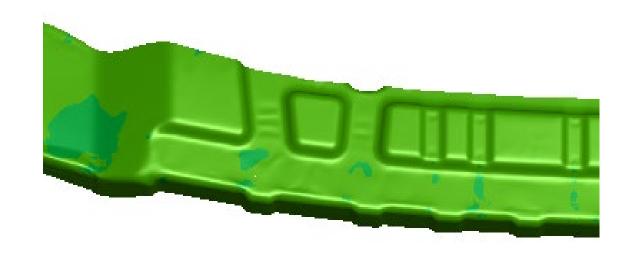
Mesh Regeneration with Mesh Adaptivity



Formability Index

Non-linear strain path

100mm to home (simulation)


100mm to home (real part)

By using Formability Index, the predicted failure is very close to reality, while fails 100mm before the die reach its home position. With conventional FLD, the failure can not be predicted.

Wrinkling predictions

Real Part

Ansys Forming prediction

Winkling is a very serious problem, especially for ultra-high strength steel The accurate prediction of wrinkling is not easy.

Drawbead Profile Generator

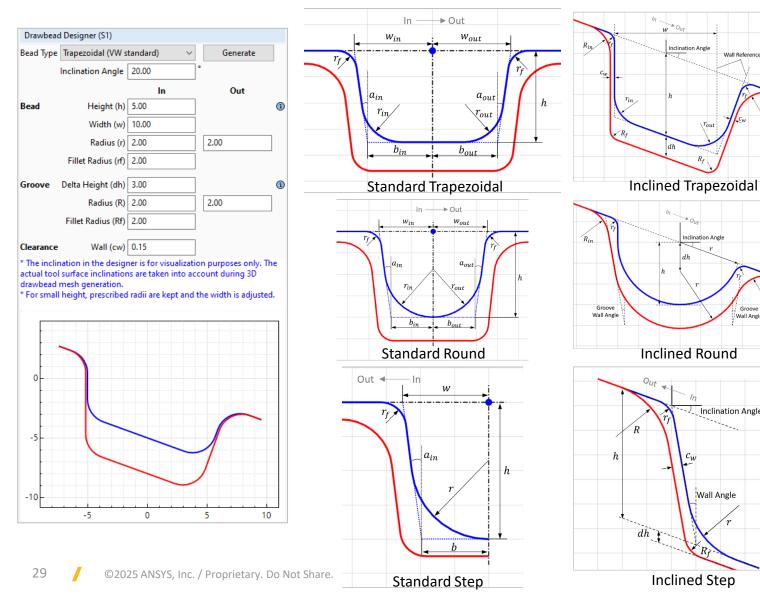
• Three new inclination-sensitive drawbead profile templates, tailored for curved surfaces

Inclination Angle

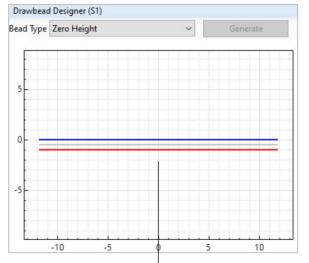
Inclination Angle

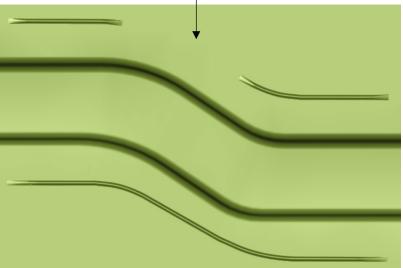
OUT

Wall Reference


Groove

Wall Angle


Inclination Angle


Wall Angle

Inclined Step

• Zero-Height bead for enhanced design flexibility

Drawbead Force Calculation and Prediction

Drawbead Profile		Fo	r all (de	efir	ied
	5	10	i un v			
Drawbead Definit	tion	C	draw	be	eac	S
÷			Ca	alcu	late	
Drawbead-1	∘ા				٥	-
Drawbead-2	٥Ĺ				٢	-
		Force Di	spidy			mm
Bead Descriptio Transition Lengt Total Uplift Force 3D Drawbead Use 3D Drawbe Settings	ch ead		Ge	ner	ate	mm
 Transition Lengt Total Uplift Force 3D Drawbead Use 3D Drawbead Settings Attached to: 	th	40		ner	ate	
 Transition Lengt Total Uplift Force 3D Drawbead Use 3D Drawbe Settings 	ch ead	40	Ge Binder	ner	ate	
 Transition Lengt Total Uplift Force 3D Drawbead Use 3D Drawbead Settings Attached to: Edit Segment 	bead Die Restrain	40 19328.9	Ge Binder	ner	ate	
 Transition Lengt Total Uplift Force 3D Drawbead Use 3D Drawbe Settings Attached to: Edit Segment 	Die Restrain (N/mm)	40 19328.9 Vplift (N/mm	Ge Binder			■ N

- Fast and accurate drawbead force calculation based on drawing simulations
- Support all bead types
- Support SMP and MPP solvers
- Support constant friction, variable friction, and user-defined table friction
- Support all materials

Bead Type	Round	~	Generate
	Defined by	Base Width \sim	
		In	Out
	Wall Angle (a)	18.43	° 18.43
Bead	Height (h)	3.00	
	Base Width (w)	3.00	3.00
	Top Width (b)	2.00	2.00
	Radius (r)	2.77	2.77
	Fillet Radius (rf)	2.00]
Groove	Height (H)	4.00	
	Base Width (W)	3.64	3.64
	Top Width (B)	2.31	2.31
	Radius (R)	3.00	3.00
	Fillet Radius (Rf)	0.80	
Clearance	Wall (cw)	0.15	
	Top (ct)	1.00	
	height, prescribe he prescribed wa		he groove's width is adjust
Blank Thick	(ness (1.00	Lubrication Coeff. 0.12
Restrain Fo	rce (214.06	Uplift Force (1) 185.39

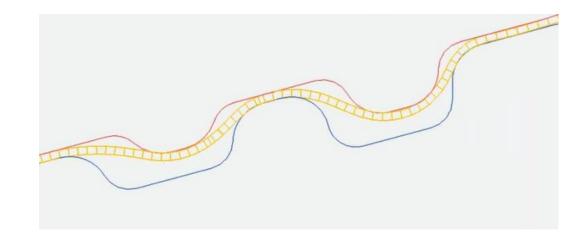
-8

-6

-4

-2

0


4

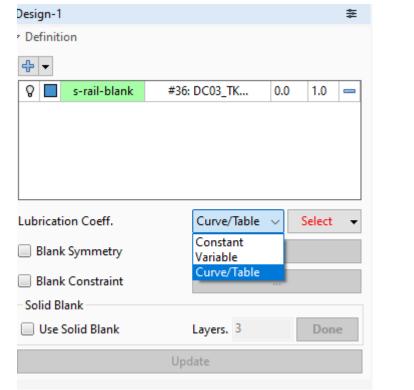
- Real-time machine learning prediction of drawbead forces
- Comparable to drawbead forces calculated by MPP solver
- Support profiles within specified parameter ranges
- Support materials with Hill'48 yield functions
- Support various blank thickness and constant friction coefficients

Non-Linear Contact

- Constant contact stiffness is commonly used in simulation
 - Large stiffness can cause contact instability
 - Small stiffness can increase penetration
- Common observation:
 - Obvious penetration is observed in curved region
- New approach
 - In smooth region, smaller contact stiffness is used
 - In curved region, large contact stiffness is used

A Universal Material Model

- The purpose of this material model is to improve the performance of the plasticity models
- The application of this material model is intended for sheet metal forming applications
- Only isotropic hardening has been supported


ptions	
Contact Friction	0.12
Contact Stiffness	0.1
Shell Type (Exp.)	2
Shell Type (Imp.)	16
Solid Type (Exp.)	-1
Solid Type (Imp.)	-1
□ NIP	3
Shell Shear Stiffness	0.8333
Output Distance Interval	5
Output Positions	5,4,3,2,1
MAT320 Parameters(IPHI,ITHETA)	501,251
Output Contact Info.	0

Material used	Run time	Saving (%)
3 parameter Barlat	4 hours 57 minutes 36 seconds	
3 parameter Barlat NLP	5 hours7 minutes 14 seconds	
Barlat 2000	4 hours 35 minutes 2 seconds	
MAT320 + 3 parameter Barlat	3 hours 56 minutes 9 seconds	1 hr 1min 27s (20%)
MAT320 + 3 parameter Barlat NLP	3 hours 58 minutes 16 seconds	1 hr 8min 58s (22%)
MAT320 + Barlat 2000	3 hours 56 minutes 3 seconds	0 hr 38min 59s (14%)

Variable Friction Coefficient

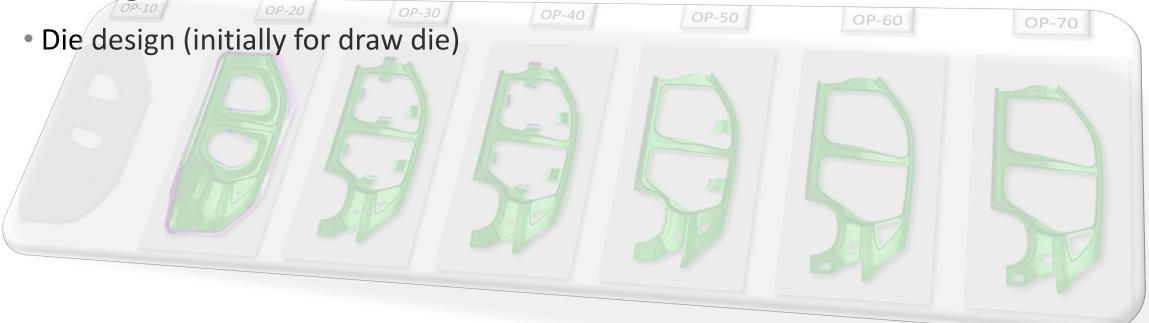
- Friction coefficient can be defined as a function of contact pressure and relative velocity
 - It support both a friction function or user input table

Visualization of the tabular

Powering Inn

Variable F	Friction						
	$\mu_{eff} = \mu igg(rac{p}{p_{ref}} igg)^{e-1}$	$- aln rac{max(v_{rel},v_{ref})}{v_{ref}}$					
	μ -base friction coefficient (Default value of 0.12)						
	p -contact pressure						
	p_{ref} -reference pressure (Default value of 4.0 MPa)						
	e-pressure exponent (Default value of 0.9)						
	<i>a</i> -velocity factor (Default value of 0.015)						
	$v_{\it rel}$ -velocity of the sheet relative to the tool in contact						
	v_{ref} -reference velocity (Default value of 10 mm/s)						
ase Friction	on Coeff.	0.12					
leference Pressure		4					
ressure Exponent		0.9					
elocity Factor		0.015					
leference Velocity		10					
	Apply	Reset					
Close							

Reconfigurable setting


- Each company/engineer can define the setting
 - Color
 - Range
 - Easy to prepare report

Reset		Category : Contour ~		\sim	Default		
Component	Title	Group	Overriden	^	Min.	Upper Color	
PRIN_STRAIN1_PLANE	major strain	Forming			Max.	Lower Color	
PRIN_STRAIN2_PLANE	minor strain	Forming				Reverse Color	False ~
THINNING	total thinning(%)	Forming					
THINNING_CURRENT	current op thinning(%)	Forming				Number of Color	10 ~
THINNING_ZSTRAIN	thinning(%) base on thickness-strain	Forming					Apply
THICKNESS	thickness	Forming					
BEND_STRAIN	bending strain	Forming			User-defined		
MEAN_STRESS	mean stress	Forming			Inherit All		
FORMING_INDEX	formability index	Forming			Min.	Upper Color	
STRAIN_RATIO	strain ratio	Forming					
PLASTIC_STRAIN	effective plastic strain	Forming			Max.	Lower Color	
SIGMA_XX	x-stress	Stress				Reverse Color	\sim
SIGMA_YY	y-stress	Stress					
SIGMA_ZZ	z-stress	Stress				Number of Color	~
SIGMA_XY	xy-stress	Stress					Apply
SIGMA_YZ	yz-stress	Stress					
SIGMA_ZX	zx-stress	Stress					
PRIN_STRESS1	1st-principal stress	Stress					
PRIN_STRESS2	2nd-principal stress	Stress					
PRIN_STRESS3	3rd-principal stress	Stress					
VONMISES	von mises stress	Stress					
SHEAR_STRESS	tresca (max shear stress)	Stress					
EPSON_XX	x-strain	Strain					
EPSON_YY	y-strain	Strain					
EPSON_ZZ	z-strain	Strain					
EPSON_XY	xy-strain	Strain					
EPSON_YZ	yz-strain	Strain					
EPSON_ZX	zx-strain	Strain					
PRIN_STRAIN1	1st-principal strain	Strain					
PRIN_STRAIN2	2nd-principal strain	Strain					
PRIN_STRAIN3	3rd-principal strain	Strain					
BEND_MOMENT_MXX	mx bending	Bend Moment		\sim			

Exciting Future

- Springback compensation of line dies
- Morphing of CAD surface after springback compensation
- Auto reporting
- Nesting and cost estimation

Ansys

