Ansys

Powering Innovation That Drives Human Advancement

Simulation of Pedestrian Protection in LS-DYNA LS-DYNA 行人保护仿真介绍

Sheng Dong, Steffen Frik, Alexander Gromer

Christoph Wilking, Tobias Graf, Katharina Liebold

©2025 ANSYS, Inc.

Pedestrian Protection Overview

Scenario: vehicle frontend hits crossing pedestrian

Factors determine injuries

- Vehicle speed
- Pedestrian height
- Frontend shape
- Hood length

For regulatory and NCAP testing:

impactors representing different human body parts hit vehicle frontend

Model capacities required

- Windshield
- Hood
- Frontend
- Pedestrian

How to...

accurately model the key components like windshield?

design a better hood for less severe injury?

better represent a pedestrian?

3

How to...

accurately model the key components like windshield?

design a better hood for less severe injury?

better represent a pedestrian?

A Model for Laminated Glass Discretization

- Laminated glass consists of at least 3 layers
 - 2 glass panes: shell elements with MAT_GLASS (MAT_280)
 - PVB interlayer: transverse shear deformation important
 → solid elements
- Contact between layers: shared nodes
- Offset the glass layers with NLOC parameter (SECTION_SHELL)

- Glass fragments are bonded
 - Difficult mechanical behavior

Introduction to MAT_GLASS (280) Theoretical Background

- Linear elastic until failure
- Stress based failure criteria: Rankine, Mohr-Coulomb, Drucker-Prager
- Compressive failure
 - Material is 'crumbled'
- Tensile failure
 - Single Cracks
 - Crack direction perpendicular to the 1st principal stress
 - 2nd crack can occur orthogonal to the 1st crack
 - Cracks can open and close independently
- Elements will not be automatically deleted when failed
- EPSCR (MAT_GLASS) or MAT_ADD_EROSION can help deleting distorted elements

Strength Reduction

- Stress concentration in tip of crack
 - Cannot be resolved by coarse FE-mesh
 - To consider this effect in MAT_280 the tensile strength can be reduced after the first crack

IMOD

BC

Combination of variables determines the way the strength reduction works

FT

Ansys

 $FTSCL \times FT$

7

New option for *MAT_280

- ENGCRT/RADCRT: failure model described by Pytell/Liebertz (2011)
 - Initially deactivates failure/cracks
 - 1st element with $\sigma_{\rm max}$ >"FT"×"FTSCL" defines center of impact
 - Internal energy of part within radius RADCRT is monitored
 - When internal energy reaches ENGCRT, failure is activated
- NEW: critical energy depends on edge distance
 - ENGCRT<0 refers to *DEFINE_FUNCTION, e.g.,


```
*DEFINE_FUNCTION
			100
float func(float distx) {
		float engx;
		engx=min(0.03*distx,7.3);
$ printf("DISTANCE=%.7e, ENERGY=%.7e\n",distx,engx);
		return engx;
}
```


Stochastic Variation

- Stochastically distributed tensile strength due to microcracks
- *MAT_280_STOCHASTIC +
 *DEFINE_STOCHASTIC_VARIATION
 → stochastically distributed factor for tensile strength
- Kind of distribution is given by VAR_S
 - 1: Uniform random distribution
 - 2: Normal distribution
 - 3: User defined probability distribution
 - 4: User defined cumulative distribution
- History variable #13 shows factor

Glass strength prediction model

Available as *MAT_GLASS_SPM

- Monte-Carlo based fracture initiation predictor
- combines the theories of linear elastic fracture mechanics (LEFM) and sub-critical crack growth (SCG)
- generates a representative sample of virtual glass plates which are monitored during the simulation
- GSPM predicts tensile strength, initiation location, and initiation time for the 1st crack, then *MAT_280 takes over for crack propagation
- Model details and calibration procedure for new parameters described in Rudshaug et al. (2023)

Glass strength prediction model

- Capabilities of the new method
 - Can describe the probabilistic fracture behavior of glass and SCG
 - Predicts the strength of glass plates of various geometries exposed to many different load cases
 - User can select a representative case of a glass plate fracture strength simply by altering the failure percentile parameter
 - Example: windshield impact

Position-Based Tensile Strength

Laminated glass

- tensile strength varies over thickness
- Options to consider effect in LS-DYNA
 - INTEGRATION_SHELL
 - PART_COMPOSITE
- INTEGRATION_SHELL is more flexible
 - Integration rule can be defined
 - For each ply, an individual stochastic variation can be defined

*PART						
Glass out	er pane					
\$ PI	D SECID	MID	EOSID	HGID	GRAV	ADPOPT
10	0 (100) 100	0	0	0	0
*SECTION_	SHELL					
\$ SECI	DELFORM	SHRF	NIP	PROPT	QR/IRID	ICOMP
10	2	0.833	3	1.0	-100	0
*INTEGRAT	ION_SHELL					
\$ Gauss-L	obatto inte	gration 3 I	Ps			
\$ IRI	D NIP	ESOP	FAILOPT			
10	3					
Ş	S WF	PID				
-1.0000	0.3333333	101				
0.0000	0 1.3333333	101				
1.0000	0.3333333	102				
*PART						
DUMMY PAR	r - Glass o	iter pane –	air side	- position	1	
\$ PI	D SECID	MID	EOSID	HGID	GRAV	ADPOPT
10:	2 100	102	0	0	0	0
*MAT_GLAS	S					
\$ MI	D RO	E	PR			IMOD
10:	2 2.5E-6	70	0.23			
\$ FMO	D FT	FC	AT	BT	AC	BC
	&ft1					

Position-Based Tensile Strength

- Laminated glass
 - tensile strength varies over thickness
- Options to consider effect in LS-DYNA
 - INTEGRATION_SHELL
 - PART_COMPOSITE
- INTEGRATION_SHELL is more flexible
 - Integration rule can be defined
 - For each ply, an individual stochastic variation can be defined

*PART		SITE					
Glass	outer	pane					
\$	PID	ELFORM	SHRF	NLOC	MAREA	HGID	ADPOPT
	100	2	0.833			4	
\$	MID1	THICK1	B1	TMID1	MID2	THICK2	B2
	100	0.05					
	100	0.5					
	100	0.5					
	100	0.5					
	100	0.5					
	200	0.05					
*MAT	GLASS !	FITLE					
PVB s	ide 🗕						
\$	MID	RO	Е	PR			IMOD
	100	2.5E-6	70	0.23			
\$	FMOD	FT	FC	AT	BT	AC	BC
	& 1	Et2					
*MAT	GLASS 1	FITLE					
air s	side						
\$	MID	RO	E	PR			IMOD
	200	2.5E-6	70	0.23			
\$	FMOD	FT	FC	AT	BT	AC	BC
	& 1	Et1					

Crack visualization Option I

Head impact on windshield

- Cracks can be visualized as a vector plot using history variables #15, #16, and #17
 - Crack direction is shown
 - So far only shows 1st crack
 - Available since R15

		•
Vector Plot X	FriComp	RefGeo
Hist, var. cosine 🗸	Ø	ູ່
	FriRang	Curve
	Hist	$\langle \rangle$
	History	Surf
H.var X H.var Y H.var Z	xy	
15 16 17	XYPlot	Solid
Int. Pt. 1	Ascii	ø
Vector Range	ASCII	GeoTol
Min: 0	Bin Out	(Pro-
Max: 0	Binout	*## Mesh
	>>	6
Dynamic Ostatic	Follow	Model
O User O Show	\leq	2-2-9
SF: 2.0 × 2	Trace	5-5-1 EleTol
		M
Hidden line vector off	State	Post
Keep vector display	-	
Apply settings in Range	Particle	MS
Display highlighted node vel.	101	MS
Force resultant	ChaiMd	4
Prin. int.pt.		Favor1
None	Output	
Whole OPart	1v	
⊖ Area ⊖ El/Node	Vector	
Apply Clear	1	
	FLD	
Save Done:	315	
	BotDC	
	1	
	Cracks	

Ansys

Crack visualization

Option II

- Head impact on windshield
- Cracks can be visualized by history variable #1 of MAT_GLASS
 - -1: compressive failure
 - 0: no failure
 - 1: one crack
 - 2: two cracks

How to...

accurately model the key components like windshield?

design a better hood for less severe injury?

better represent a pedestrian?

Topology Optimization using LS-TaSC

- Topology and shape optimization of non-linear problems
- Multiple load cases and disciplines
- Global constraint handling
 - Energy absorption, maximum reaction forces, ...
 - \rightarrow Multi-point optimization and metamodels
- Redistribution of material within a given domain
- Design variables
 - Relative density of each element
- Result
 - New material distribution
 - New shape of structure

LS-TaSC Algorithm

• Objective: Stiffest structure, satisfy constraints and minimize mass • Constraints: rear beam, bending and torsion displacements **Outer skin (shell)** Optimum **Design part (solid)** Initial Design has very low mass fraction of 0.01. Rear beam Torsion **Design Contribution Plot** Bending Model by courtesy of Jaguar Land Rover (Rear beam, torsion, bending)

Hood Design Optimization using LS-TaSC

Integration

Active hood system

• Active hoods to provide more deformation space between the hood and the engine compartment package

- Sensing system to identify a pedestrian impact (fiberoptics, pressure tube)
- Active system (actuator at hinge) to deploy the hood
- Special requirements to prove that hood is fully deployed prior to the head impact

Pressure tube sensor

- Pressure tubes along the bumper foam
- Sensing locations at the ends of the tube

- Impact will compress tube and create pressure wave traveling along the tube
- Tube modeling including physical properties defined by *DEFINE_PRESSURE_TUBE

22 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement

Reference: "Recent Developments in *DEFINE PRESSURE TUBE for Simulating Pressure Tube Sensors in Pedestrian Crash" by Jesper Karlsson

How to...

accurately model the key components like windshield?

design a better hood for less severe injury?

better represent a pedestrian?

Introducing HANS

- Hans is a high-fidelity LS-DYNA human body model
- Commercial model licensed separately
- Hans represents an average male person AM50
 - Body Specs: ~77kg, 176cm, BMI 24.9, Age 30-40
 - Model size
 - Number of nodes: ~1.6Mio
 - Number of elements: ~2Mio
 - Number of parts: 1,978
 - Macro Fiber Parts (keep adding): 138
 - Contacts
 - 1 single surface contact
 - 5 tied contacts to attach soft tissue
 - Recommended time step: 0.5µsec

Modeling Fundamentals

- Passive model targeted for any kind of explicit impact simulation
- Focus on the musculoskeletal system at first
- Modeling the physics:
 - Model the human body with a high level of detail

- Avoiding abstraction and substitute approaches
 - Geometry and materials are modeled as is
 - \rightarrow Less tweaking needed to correlate to test data
 - Better confidence in load cases that are not covered by test
- Following the modeling approaches of the successful DYNAmore Dummy models

Motivation

Product development

- So far, many industries rely on physical and virtual dummies for product development
- Human Body models can overcome some downsides of dummies, as they are
 - a more accurate approximation of a human
 - are **non-directional**
- Increasingly sophisticated safety systems and new application areas require higher fidelity models
 - "Made for humans not for dummies"

Product Certification

- There are initiatives in serveral industries to establish virtual product certification using HBMs
 - EuroNCAP, IIHS, C-NCAP, ... are actively working on such protocols
 - DYNAmore/ANSYS is involved in the EuroNCAP activities
 - Virtual Tests require qualified human body models

- ...

Vulnerable Road Users (VRUs) – EuroNCAP TB024

- Qualification model included in the delivery package
- In total 9 (3 generic vehicles x 3 impact speeds) are carried out for qualification

How to... in summary

accurately model the key components like windshield?

Laminated glass model with MAT_GLASS + added features

design a better hood for less severe injury?

Use optimization tools such as LS-TaSC and active hood

better represent a pedestrian?

HANS! For virtual certification

SimAl Objective

Several Designs

SimAl – General Idea

SimAI possesses several unique features:

- (i) it is robust to varying mesh sampling, allowing for adaptability to different geometries,
- (ii) it effectively captures multi-scale phenomena, resulting in stateof-the-art scores for both volume and surface evaluations,
- (iii) as a continuous surrogate model, it can be used to accelerate the evaluation of different geometries during the design process, leading to significant speed-up.

- Encode the distance function and the normal components into latent codes
- Use the latent codes to infer predicted output codes
- Decode the output codes with modulated INRs to get the physical fields
- SimAI uses a proprietary Architecture slightly different from the one shown above

- Iotal data of 106 simulations
 - Training set : 86 simulation Data points
 - Testing Data set : 20 Simulation Data points

Pedestrian Head Impact

- Challenge
 - For Pedestrian Head Impact, a grid of around 200 points on the hood are evaluated for predicted HIC value.
 - Needs to be repeated for every design change
- SimAl + LS-DYNA
 - Instead of running all 200 points, Run the simulation on 100 points. Predict HIC value for remaining points using SimAI
 - Total data of 106 simulations- 86 training set & 20 testing set

Pedestrian Head Impact : SimAl Model

- Total data of 106 simulations
 - Training set : 86 simulation Data points
 - Testing Data set : 20 Simulation Data points
 - Typical Data Point :
 - json file with input parameters
 - E.g. this case , We have considered Time
 - .vtp file : which contained displacement field and HIC value
 - .vtu file : For cast component, it has displacement field

		21		
🧾 boundary_condition.json	17-06-2024 16:47	JSON File	1 KB	
📶 surface.vtp	17-06-2024 16:47	VTP File	47,856 KB	
📶 volume.vtu	17-06-2024 16:47	VTU File	5,272 KB	

{"Time": 29.99936866760254}

json file

Model Configuration and Evaluation Report

Model configuration

3.5.1 Test geometry 118

Reference sample

ML_Pdst_v4_C.5.7_28 👤

- Boundary Condition: boundary_condition.json
- Surface file: surface.vtp
- Volume file: volume.vtu

Input/Output = <u>Select variables</u>

Model Inputs Model Outputs Geometry Volume • HIC · Extracted from the surface • U[X] Surface • U[Y] No input • U[Z] **Boundary Conditions** Surface Time • HIC U[X] • U[Y]

✓ Your variables are set

Your volume is set

Your reference sample is valid

Global Coefficients

- HIC_global, in this case 6.454e+2 • U-Normed, in this case 1.962e+2
- Ux_max, in this case 1.679e+2
- Uy_max, in this case 3.659e+1 Uz_max, in this case 4.577e+1

Create coefficient

(a) SimAl prediction (Solver scale)

(b) Solver target (Solver scale)

Figure 20: Geometry mesh of U[Z]

2.2.1 HIC_global

Figure 1: HIC global trend comparison plot

(c) Difference (Zoomed scale)

Domain of Analysis

Define domain of analysis

x position relative to design edge	Volxmin = xmin - 247.627	Length = 2971.527
y position relative to design edge	Volymin = ymin - 220.333	Width = 2643.992
z position relative to design edge	Volzmin = zmin - 142.907	Height = 1714.888

U[Z]

Build duration

O Debug 🐼 4 Data, 30min build

Production

Precise

Pedestrian Head Impact : SIMAI Prediction

Fields	SimAl	Solver	% Error
Maximum Displacement	178.3	179.0	0.4
HIC Value	532.9	518.3	2.8

Fields	SimAl	Solver	% Error
Maximum Displacement	229.1	230.7	0.7
HIC Value	532.9	518.3	2.8

AI ML | Pedestrian Head Impact

- Solver Time : 1hr on 96 CPUs
- SimAl Prediction Time : < 1min

1 / ©2024 ANSYS, Inc.

Powering Innovation That Drives Human Advancement //nsys

Fields	SimAl	Solver	% Error
Maximum Displacement	169	174	2.87
HIC Value	522	507	2.95

20 locations previously unseen by the model

Powering Innovation That Drives Human Advancement

HIC value Prediction

Average Predicting Error is less than 2%

Improved Delivery Positions

- Occupant delivery position modified based on *Rieger et al (2023)*
- Spine angle measurements from volunteer scans in car seats

- Given the same H-Point location, the posture of Hans is close to the postures of WorldSID50M and THOR-50M
- Hans delivery position is aligned with Dummy model positions

 The Pedestrian Position completely fulfils the EuroNCAP TB024 requirements

Summary

- Hans V1.2 comes with a lot of improvements for automotive customers in terms of usability and performance.
- The new release prepares the model for the upcoming/existing EuroNCAP requirements
- **R12.2** is the model development version and required to use Hans
- Included to the delivery package:
 - model in standing and sitting postures One Model
 - Human Body Model in three unit-systems, including parameterized renumbering
 - Accessoires like shoes, ...
 - Treefile for positioning of the model in the commonly used pre-processing tools
 - Documentation/Correlation report
 - 1st class global expert support

Required simulation capabilities

- Material properties
 - Plastic materials (headlamps, front fascia, ...)
 - Including fracture
 - Windshield glass
 - Fracture and crack propagation
 - Displacement (potential secondary impact with instrument panel)
- Package parts
 - Powertrains
 - Electronic components
 - Hinges

39

- Cables and cable bundles
- Instrument panels including all parts in potential impact area

Modeling of package components

Simplified electric cable modeling with *DEFINE_CABLE

- Simple creation and analysis of electric cables for modeling wire failure in vehicle crash
 - Automatic creation of cables from beam elements
 - Final cables can be a mix of solids/shells/beams
 - Links cross-section data to each original beam element
- Data available in binout (*DATABASE_CABLE: cableout)
 - Compression (contact) force
 - Cross-section area
- Data summary available in ASCII-file
 - Time and location for maximum compression force and minimum cross-section area for each cable and for whole model

Data summary

PART-WISE DA	TA:					
Beam part= maxstress= minarea = maxforce =	83990001, sampling freq 0.4953E-01, time= 0.5891E+02, time= 0.5590E+01, time=	uency= 0.5000E+01, 0.5000E+01, 0.4998E+01,	1 cycles element= element= element=	46 48 46		
Beam part= maxstress= minarea = maxforce =	83990002, sampling freq 0.7170E-01, time= 0.8419E+02, time= 0.9542E+01, time=	uency= 0.4991E+01, 0.4997E+01, 0.4997E+01,	10 cycles element= element= element=	6020579 6020579 6020579		
Beam part= maxstress= minarea = maxforce =	83990005, sampling freq 0.3333E-03, time= 0.3247E+03, time= 0.0000E+00, time=	uency= 0.4854E+01, 0.2972E+01, 0.0000E+00,	1 cycles element= element= element=	6020613 6020613 0		
Beam part= maxstress= minarea = maxforce =	83990006, sampling freq 0.5296E-03, time= 0.8662E+02, time= 0.0000E+00, time=	uency= 0.2155E+01, 0.2664E+01, 0.0000E+00,	1 cycles element= element= element=	6020623 6020623 0		
DATA FOR ALL	PARTS:					
maxstress= minarea = maxforce =	0.7170E-01, time= 0.5891E+02, time= 0.9542E+01, time=	0.4991E+01, 0.5000E+01, 0.4997E+01,	element= element= element=	6020579, 48, 6020579,	part= part= part=	83990002 83990001 83990002

