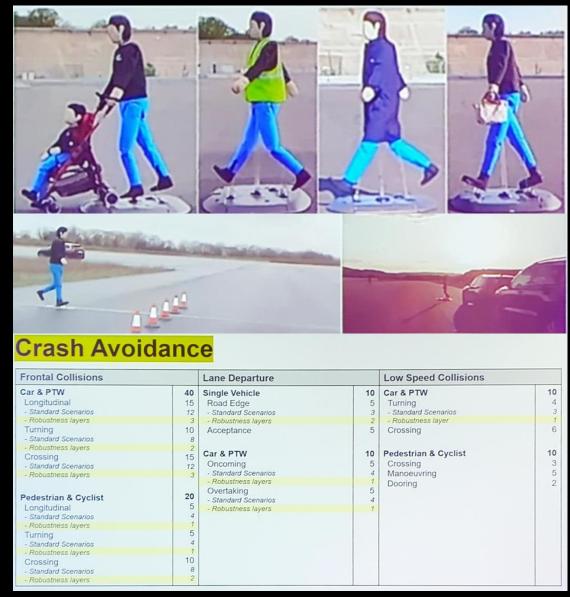


Powering Innovation That Drives Human Advancement

Robust ADAS through NCAP Virtual Testing

Guoyin ZHAO

Lead Application Engineer


New challenging safety regulations for ADAS

Euro NCAP 2026 & further Crash avoidance / AEB

NCAP 2026+

- Increases the **weight of ratings** for ADAS technologies.
- Emphasizes on systems that **detect VRUs** especially in urban environments.

- <u>Target</u>: Avoid sub-optimization due to strict testing conditions
 - Incorporate **virtual testing methods** into the assessment process.
 - Introduce **robustness** tests to challenge all system layers: algorithm and **perception**

Ardiano Palao, Technical Manager ADAS & AD Euro NCAP

NCAP 2026 – Virtual testing is part of assessment process

- NCAP now accepts virtual testing results as valid input for Safe Driving and Crash Avoidance performance:
 - 1. Qualification of simulation model by OEM
 - 2. Virtual testing generates color predictions
 - 3. Physical verification testing by Euro NCAP (random selection)
 - 4. Validation of virtual test data
- Database of scenario provided by Euro NCAP in OpenSCENARIO XML format.

Scenario cluster	Acceptance criteria	Acceptance criteria
	Standard Matrix	Extended Matrix
Frontal – Longitudinal	[0.7]	[0.5]
Frontal – Turning	[0.7]	[0.5]
Frontal – Crossing	[0.7]	[0.5]

ISO score (ISO TS 188571) – longitudinal vehicle acceleration

Scenario cluster	KPI_error	Accepted KPI_error	
Frontal – Longitudinal	TTC_AEB [s]	[+-0.2]	
	TTC_FCW [s]	[+-0.2]	
	Remaining distance [m]	[+-1.0]	
	Impact speed [m/s]	[+-1.0]	
Frontal – Turning	TTC_AEB [s]	[+-0.2]	
	TTC_FCW [s]	[+-0.2]	
	Remaining distance [m]	[+-1.0]	
	Impact speed [m/s]	[+-1.0]	
Frontal – Crossing	TTC_AEB [s]	[+-0.25]	
	TTC_FCW [s]	[+-0.5]	
	Impact speed [m/s]	[+-1.0]	
Lane – ELK	DTLE_ELK [m]	[+-0.2]	
	DTLE_LDW [m]	[+-0.2]	

KPIs per Scenario Cluster

NCAP 2026 – Performance prediction using simulation

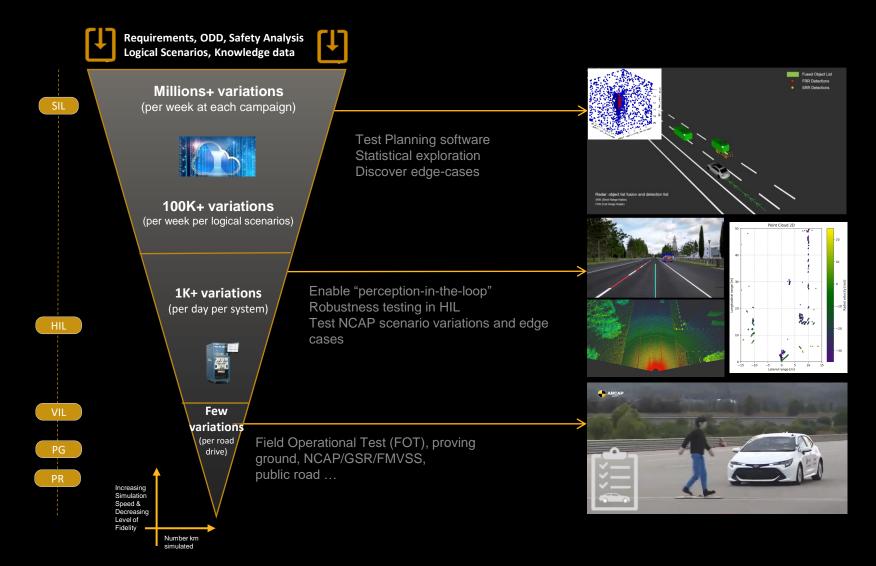
- Main Layer Scenario
 - Focus on planning & control algorithm performances
 - Scenario GRID testing color ratings
 - 2D matrix with Standard Range + Extended Range
 - Virtual Testing can be used as valid input, assuming "perfect" perception.
- Grid cell scaling (mitigation & avoidance scenarios) Predicted 20 km/h 30 km/h 5 km/h >1 colour ≤1 colour 50 km/h 60 km/h 0,75 **PASS** 30 km/ 0.50 **FAIL** * When compared against the adjacent grid cell of that parameter (Excluding Red), where impac location has higher priority than vehicle speed

- Additional Layers Perception
 - Introduction of test complexity and variation, designed to challenge vehicle systems and encourage reliable "real-world" performance
 - Based on real-world data logging (FOT)
 - Can be anticipated with perception in the loop simulation

NCAP 2026 – Robustness test with perception

- Robustness testing needs perception in the loop:
 - VRU target type, Appearance
 - Adverse Weather, Illumination (nighttime, glare)
 - Infrastructure & objects obscuration
- OEMs must demonstrate that the system perception is not significantly degraded
 - Proven by real driving logs: typically challenging to collect
 - Should be anticipated based on perception in the loop simulations

Protocols 2026 - V1.0


Robustness layers		Description	Verification	Input source
Type	Layer	Description	Test	
VUT	Driver input pre-crash	Normal driving without steering robot and/or speed control function	Yes	OEM information on system overriding conditions
Accelera Initial pos offse Trajecto	Speed	Small variance in the nominal target speed	Yes	
	Acceleration	Small variance in the nominal target acceleration	Yes	VTA or OEM self-claim
	Initial position offset	Small variance in the nominal target initial position	Yes	
	Trajectory/ Heading	Small variance in the nominal target heading	Yes	
Type Appearance	Туре	Different collision partner type with similar kinematics	No	
	Same collision partner type but with different appearance (e.g., colour, accessories, shape)	No		
Adverse weather conditions Illumination (Night time) Illumination - Glare Infrastructure / clutter	weather	Functionality available under the presence of Rain, Fog, Dirt/ice/moisture	No	
	Performance in darkness (1 lux) for all daytime scenarios	No*		
		Functionality available under the presence of glare caused by Low sun (all scenarios)	No	FOT data**
		Functionality available under the presence of glare caused by headlights of a stationary vehicle on adjacent lane (all standard nighttime scenarios)	No*	
	furniture or eccondary road users		No*	
	Obscuration / Obstruction	Variance in the layout of nominal obstructions	No*	

Ansys AVxcelerate


Ansys solutions for NCAP testing

Scenario-based testing for NCAP

- Explore, Optimize, Automate
 - Bring logical scenario variation in CI/CD process (>500k variation)
 - Optimize scenario exploration
 - Orchestrate simulation on cloud AWS/Azure
 - Open simulation framework based on ASAM standards

High fidelity sensor for NCAP perception

Video removed due to confidentiality

©2025 ANSYS, Inc. / Proprietary. Do Not Share.

NCAP Virtual Testing examples

NCAP CCRb (performance prediction using simulation)

Car-to-Car Rear braking

The CCRb tests will be performed at a fixed speed of 50km/h for both VUT and GVT with all combinations of -2 and -6m/s² acceleration and 12 and 40m headway. Different overlap situations may be tested for monitoring purpose at the end of the test program.

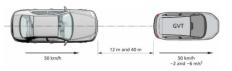
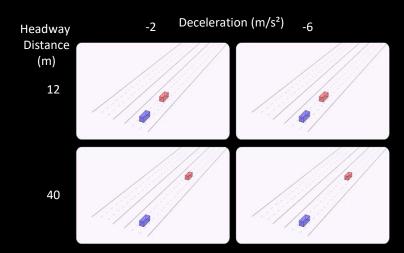
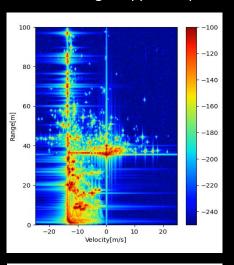



Figure 8-3: CCRb scenario

		AEB+FCW combined & AEB only		
		-2 m/s ²	-6 m/s ²	
AEB CCRb	12m	50 km/h	50 km/h	
AEB CCRD	40m	50 km/h	50 km/h	

For CCRb $T_0 = T_{GVT \text{ deceleration start}} - 1s$.

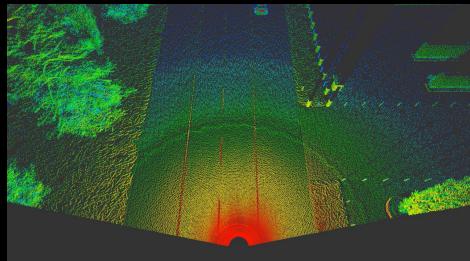

 T_0 begins 1 second before GVT starts deceleration, for tolerance monitoring purposes. The desired deceleration of the GVT shall be reached within 1.0 second $(T_0+2.0s)$ which after the GVT shall remain within \pm 0.5 km/h of the reference speed profile, derived from the desired deceleration, until the vehicle speed equals 2km/h.

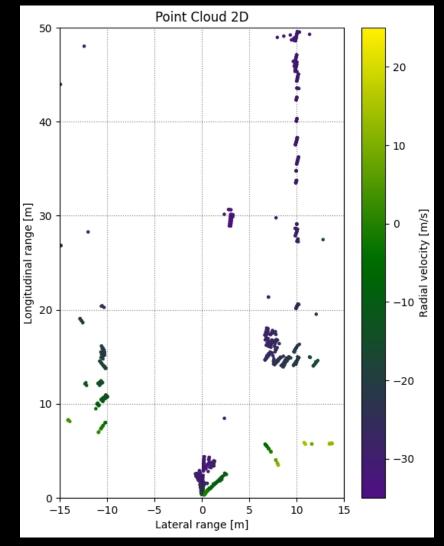
Scenario view (3rd person view)

Radar range doppler map

Front camera

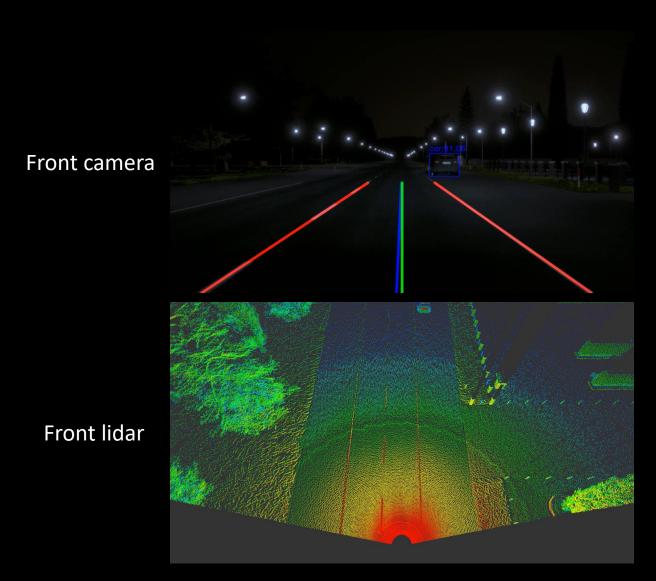
Radar point cloud

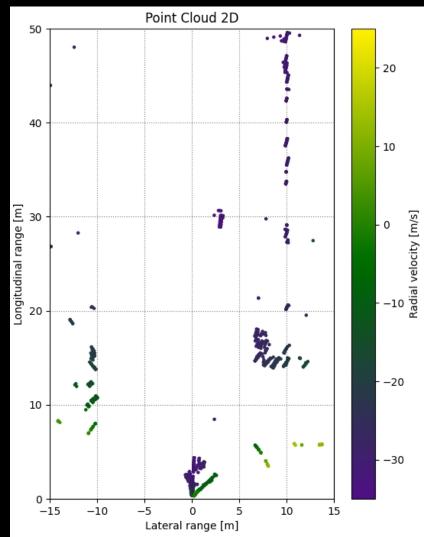



NCAP CPNCO (robustness daytime)

Front camera

Front lidar

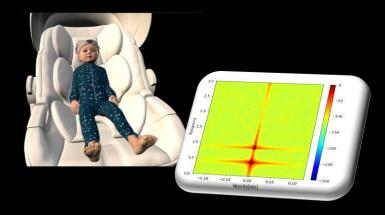




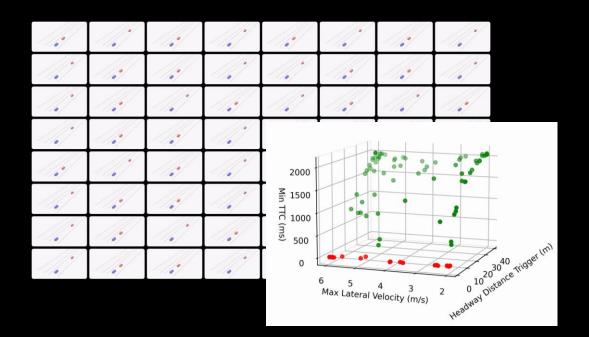
Radar point cloud

NCAP CPNCO (robustness nighttime)

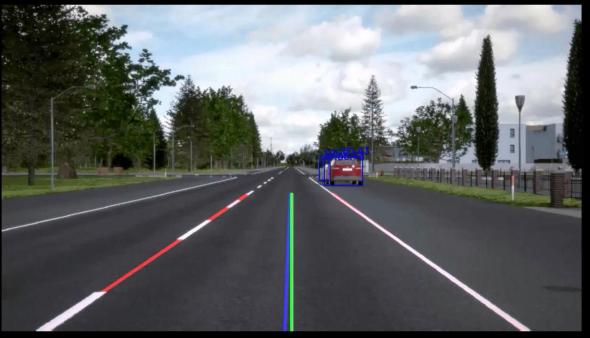
Radar point cloud


Simulation for NCAP beyond crash avoidance

• DMS/Occupant monitoring



With **Ansys** secure to get Euro NCAP 2026


Scenario variations

- Quickly simulate NCAP scenario variations with customer ADAS Algo testing
- Help engineers to optimize ADAS algorithms using reliability methods
- Generate NCAP virtual testing reports

Perception

- Perception-in-the-loop testing using physics-based sensor (camera, radar, etc).
- Variations: target appearance, type, weather, day/night...
- Quantify performance and secure on-road testing

Insys